diabetestalk.net

What Organ Releases Glucose Between Meals?

What Organ Releases Glucose To Help Maintain Normal Blood Glucose Levels In Between Meals?

What Organ Releases Glucose To Help Maintain Normal Blood Glucose Levels In Between Meals?

What organ releases glucose to help maintain normal blood glucose levels in between meals? What organ releases glucose to help maintain normal blood glucose levels in between meals? Would you like to merge this question into it? already exists as an alternate of this question. Would you like to make it the primary and merge this question into it? How does glucagon and insulin help maintain normal glucose level? Glucagon is a hormone that converts glycogen stored in the liver into Glucose (Sugars). When our blood sugar level fall below normal, glucagon will convert the glycogen stored to sugar (Glucose) to ICREASE our blood sugar levels: Glucagon is used when blood sugar levels fall below normal and glucose is needed to raise the levels. Insulin is necessary for the body to convert sugar, starches into energy needed for daily usage, Insulin is a hormone that is produced by the pancreas and released into the bloodstream when glucose (Blood Sugar) levels are on the rise, When the body has a high blood sugar, Insulin in released, breaking down the glucose and LOWERING the blood sugar levels. (MORE) Continue reading >>

How Does The Liver Control Glucose In The Blood?

How Does The Liver Control Glucose In The Blood?

Your body needs a constant supply of glucose, or sugar, for cells to have energy, so it requires a readily available reservoir to keep blood glucose in balance. One of the liver’s main roles in the body is controlling the amount of glucose circulating in the blood. By storing excess glucose as glycogen and creating new glucose from proteins and fat byproducts, the liver is able to maintain balanced glucose levels in your body at all times. Video of the Day When you eat carbohydrates, the body releases glucose into the bloodstream immediately, triggering the production of insulin. The body cannot be in a state of constant consumption, so when insulin levels are high enough, the body links long chains of glucose together into a compound called glycogen, which is then stored in the liver and the muscles. The liver uses this stored glucose energy as its main reservoir for releasing glucose into the bloodstream when levels drop. Breakdown of Glycogen Blood glucose levels drop when you're not eating, such as during sleep or between meals. This low blood sugar signals the liver to produce glucose and release it back into the bloodstream. The liver favors glycogen as its primary source since it is efficiently broken down into glucose in a process known as glycogenolysis. In this process, the liver breaks the bonds that hold glucose molecules together as glycogen, degrading most but not all of the glycogen molecule. Effects of Insulin Resistance When your body is chronically subjected to high levels of blood sugar and insulin, such as after you've eaten an excessive amount of foods high in sugar, it develops a resistance to the hormone, and the liver cannot respond properly, eventually leading to type-2 diabetes if the resistance is not controlled. According to a study publish Continue reading >>

C2006/f2402 '11 Outline Of Lecture #16

C2006/f2402 '11 Outline Of Lecture #16

Handouts: 15A -- Lining of the GI Tract & Typical Circuit 15B -- Homeostasis -- Seesaw view for Glucose and Temperature Regulation; 16 -- Absorptive vs Postabsorptive state I. Homeostasis, cont. See handouts 15A & B & notes of last time, topic VI. A. Regulation of Blood Glucose Levels -- Seesaw View #1 (Handout 15B) B. Regulation of Human Body Temperature -- Seesaw #2 (Handout 15B) C. The Circuit View (Handout 15A) II. Matching circuits and signaling -- an example: How the glucose circuit works at molecular/signaling level Re-consider the circuit or seesaw diagram for homeostatic control of blood glucose levels -- what happens in the boxes on 15A? It may help to refer to the table below. A. How do Effectors Take Up Glucose? 1. Major Effectors: Liver, skeletal muscle, adipose tissue 2. Overall: In response to insulin, effectors increase both uptake & utilization of glucose. Insulin triggers one or more of the following in the effectors: a. Causes direct increase of glucose uptake by membrane transporters b. Increases breakdown of glucose to provide energy c. Increases conversion of glucose to 'stores' (1). Glucose is converted to storage forms (fat, glycogen), AND (2). Breakdown of storage fuel molecules (stores) is inhibited. d. Causes indirect increase of glucose uptake by increasing phosphorylation of glucose to G-P, trapping it inside cells 3. How does Insulin Work? a. Receptor: (1). Insulin works through a special type of cell surface receptor, a tyrosine kinase linked receptor; See Sadava fig. 7.7 (15.6). Insulin has many affects on cells and the mechanism of signal transduction is complex (activating multiple pathways). (2). In many ways, insulin acts more like a typical growth factor than like a typical endocrine. (Insulin has GF-like effects on other cells; is i Continue reading >>

What Is Glucagon?

What Is Glucagon?

Tweet The effects of glucagon are the opposite of the effects induced by insulin. The two hormones need to work in partnership with each other to keep blood glucose levels balanced. Glucagon is a hormone that is produced by alpha cells in a part of the pancreas known as the islets of Langerhans. The role of glucagon in the body Glucagon plays an active role in allowing the body to regulate the utilisation of glucose and fats. Glucagon is released in response to low blood glucose levels and to events whereby the body needs additional glucose, such as in response to vigorous exercise. When glucagon is released it can perform the following tasks: Stimulating the liver to break down glycogen to be released into the blood as glucose Activating gluconeogenesis, the conversion of amino acids into glucose Breaking down stored fat (triglycerides) into fatty acids for use as fuel by cells Glucagon and blood glucose levels Glucagon serves to keep blood glucose levels high enough for the body to function well. When blood glucose levels are low, glucagon is released and signals the liver to release glucose into the blood. Glucagon secretion in response to meals varies depending on what we eat: In response to a carbohydrate based meal, glucagon levels in the blood fall to prevent blood glucose rising too high. In response to a high protein meal, glucagon levels in the blood rise. Glucagon in diabetes In people with diabetes, glucagon’s presence can raise blood glucose levels too high. The reason for this is either because not enough insulin is present or, as is the case in type 2 diabetes, the body is less able to respond to insulin. In type 1 diabetes, high levels of circulating insulin can inhibit the release of glucagon in response to hypoglycemia. Medications which affect gluca Continue reading >>

The Liver & Blood Sugar

The Liver & Blood Sugar

During a meal, your liver stores sugar for later. When you’re not eating, the liver supplies sugar by turning glycogen into glucose in a process called glycogenolysis. The liver both stores and produces sugar… The liver acts as the body’s glucose (or fuel) reservoir, and helps to keep your circulating blood sugar levels and other body fuels steady and constant. The liver both stores and manufactures glucose depending upon the body’s need. The need to store or release glucose is primarily signaled by the hormones insulin and glucagon. During a meal, your liver will store sugar, or glucose, as glycogen for a later time when your body needs it. The high levels of insulin and suppressed levels of glucagon during a meal promote the storage of glucose as glycogen. The liver makes sugar when you need it…. When you’re not eating – especially overnight or between meals, the body has to make its own sugar. The liver supplies sugar or glucose by turning glycogen into glucose in a process called glycogenolysis. The liver also can manufacture necessary sugar or glucose by harvesting amino acids, waste products and fat byproducts. This process is called gluconeogenesis. When your body’s glycogen storage is running low, the body starts to conserve the sugar supplies for the organs that always require sugar. These include: the brain, red blood cells and parts of the kidney. To supplement the limited sugar supply, the liver makes alternative fuels called ketones from fats. This process is called ketogenesis. The hormone signal for ketogenesis to begin is a low level of insulin. Ketones are burned as fuel by muscle and other body organs. And the sugar is saved for the organs that need it. The terms “gluconeogenesis, glycogenolysis and ketogenesis” may seem like compli Continue reading >>

The Liver And Blood Glucose Levels

The Liver And Blood Glucose Levels

Tweet Glucose is the key source of energy for the human body. Supply of this vital nutrient is carried through the bloodstream to many of the body’s cells. The liver produces, stores and releases glucose depending on the body’s need for glucose, a monosaccharide. This is primarily indicated by the hormones insulin - the main regulator of sugar in the blood - and glucagon. In fact, the liver acts as the body’s glucose reservoir and helps to keep your circulating blood sugar levels and other body fuels steady and constant. How the liver regulates blood glucose During absorption and digestion, the carbohydrates in the food you eat are reduced to their simplest form, glucose. Excess glucose is then removed from the blood, with the majority of it being converted into glycogen, the storage form of glucose, by the liver’s hepatic cells via a process called glycogenesis. Glycogenolysis When blood glucose concentration declines, the liver initiates glycogenolysis. The hepatic cells reconvert their glycogen stores into glucose, and continually release them into the blood until levels approach normal range. However, when blood glucose levels fall during a long fast, the body’s glycogen stores dwindle and additional sources of blood sugar are required. To help make up this shortfall, the liver, along with the kidneys, uses amino acids, lactic acid and glycerol to produce glucose. This process is known as gluconeogenesis. The liver may also convert other sugars such as sucrose, fructose, and galactose into glucose if your body’s glucose needs not being met by your diet. Ketones Ketones are alternative fuels that are produced by the liver from fats when sugar is in short supply. When your body’s glycogen storage runs low, the body starts conserving the sugar supplies fo Continue reading >>

Normal Regulation Of Blood Glucose

Normal Regulation Of Blood Glucose

The human body wants blood glucose (blood sugar) maintained in a very narrow range. Insulin and glucagon are the hormones which make this happen. Both insulin and glucagon are secreted from the pancreas, and thus are referred to as pancreatic endocrine hormones. The picture on the left shows the intimate relationship both insulin and glucagon have to each other. Note that the pancreas serves as the central player in this scheme. It is the production of insulin and glucagon by the pancreas which ultimately determines if a patient has diabetes, hypoglycemia, or some other sugar problem. In this Article Insulin Basics: How Insulin Helps Control Blood Glucose Levels Insulin and glucagon are hormones secreted by islet cells within the pancreas. They are both secreted in response to blood sugar levels, but in opposite fashion! Insulin is normally secreted by the beta cells (a type of islet cell) of the pancreas. The stimulus for insulin secretion is a HIGH blood glucose...it's as simple as that! Although there is always a low level of insulin secreted by the pancreas, the amount secreted into the blood increases as the blood glucose rises. Similarly, as blood glucose falls, the amount of insulin secreted by the pancreatic islets goes down. As can be seen in the picture, insulin has an effect on a number of cells, including muscle, red blood cells, and fat cells. In response to insulin, these cells absorb glucose out of the blood, having the net effect of lowering the high blood glucose levels into the normal range. Glucagon is secreted by the alpha cells of the pancreatic islets in much the same manner as insulin...except in the opposite direction. If blood glucose is high, then no glucagon is secreted. When blood glucose goes LOW, however, (such as between meals, and during Continue reading >>

Insulin And Glucagon

Insulin And Glucagon

Acrobat PDF file can be downloaded here. The islets of Langerhans The pancreatic Islets of Langerhans are the sites of production of insulin, glucagon and somatostatin. The figure below shows an immunofluorescence image in which antibodies specific for these hormones have been coupled to differing fluorescence markers. We can therefore identify those cells that produce each of these three peptide hormones. You can see that most of the tissue, around 80 %, is comprised of the insulin-secreting red-colored beta cells (ß-cells). The green cells are the α-cells (alpha cells) which produce glucagon. We see also some blue cells; these are the somatostatin secreting γ-cells (gamma cells). Note that all of these differing cells are in close proximity with one another. While they primarily produce hormones to be circulated in blood (endocrine effects), they also have marked paracrine effects. That is, the secretion products of each cell type exert actions on adjacent cells within the Islet. An Introduction to secretion of insulin and glucagon The nutrient-regulated control of the release of these hormones manages tissue metabolism and the blood levels of glucose, fatty acids, triglycerides and amino acids. They are responsible for homeostasis; the minute-to-minute regulation of the body's integrated metabolism and, thereby, stabilize our inner milieu. The mechanisms involved are extremely complex. Modern medical treatment of diabetes (rapidly becoming "public enemy number one") is based on insight into these mechanisms, some of which are not completely understood. I will attempt to give an introduction to this complicated biological picture in the following section. Somewhat deeper insight will come later. The Basics: secretion Let us begin with two extremely simplified figur Continue reading >>

You And Your Hormones

You And Your Hormones

Where is the pancreas? The pancreas is a large gland that lies alongside the stomach and the small bowel. It is about six inches (approximately 15 cm) long and is divided into the head, body and tail. What does the pancreas do? The pancreas carries out two important roles: It makes digestive juices, which consist of powerful enzymes. These are released into the small bowel after meals to break down and digest food. It makes hormones that control blood glucose levels. The pancreas produces hormones in its 'endocrine' cells. These cells are gathered in clusters known as islets of langerhans and monitor what is happening in the blood. They then can release hormones directly into the blood when necessary. In particular, they sense when sugar (glucose) levels in the blood rise, and as soon as this happens the cells produce hormones, particularly insulin. Insulin then helps the body to lower blood glucose levels and 'store' the sugar away in fat, muscle, liver and other body tissues where it can be used for energy when required. The pancreas is very close to the stomach. As soon as food is eaten, the pancreas releases digestive enzymes into the bowel to break food down. As the food is digested, and nutrient levels in the blood rise, the pancreas produces insulin to help the body store the glucose (energy) away. Between meals, the pancreas does not produce insulin and this allows the body to gradually release stores of energy back into the blood as they are needed. Glucose levels remain very stable in the blood at all times to ensure that the body has a steady supply of energy. This energy is needed for metabolism, exercise and, in particular, to fuel the parts of the brain that 'run' on glucose. This makes sure that the body doesn't starve between meals. What hormones does th Continue reading >>

Blood Glucose Regulation

Blood Glucose Regulation

Glucose is needed by cells for respiration. It is important that the concentration of glucose in the blood is maintained at a constant level. Insulin is a hormone produced by the pancreas that regulates glucose levels in the blood. How glucose is regulated Glucose level Effect on pancreas Effect on liver Effect on glucose level too high insulin secreted into the blood liver converts glucose into glycogen goes down too low insulin not secreted into the blood liver does not convert glucose into glycogen goes up Use the animation to make sure you understand how this works. You have an old or no version of flash - you need to upgrade to view this funky content! Go to the WebWise Flash install guide Glucagon – Higher tier The pancreas releases another hormone, glucagon, when the blood sugar levels fall. This causes the cells in the liver to turn glycogen back into glucose which can then be released into the blood. The blood sugar levels will then rise. Now try a Test Bite- Higher tier. Diabetes is a disorder in which the blood glucose levels remain too high. It can be treated by injecting insulin. The extra insulin allows the glucose to be taken up by the liver and other tissues, so cells get the glucose they need and blood-sugar levels stay normal. There are two types of diabetes. Type 1 diabetes Type 1 diabetes is caused by a lack of insulin. It can be controlled by: monitoring the diet injecting insulin People with type 1 diabetes have to monitor their blood sugar levels throughout the day as the level of physical activity and diet affect the amount of insulin required. Type 2 diabetes Type 2 diabetes is caused by a person becoming resistant to insulin. It can be controlled by diet and exercise. There is a link between rising levels of obesity (chronic overweight) and i Continue reading >>

You And Your Hormones

You And Your Hormones

What is glucagon? Glucagon is a hormone that is involved in controlling blood sugar (glucose) levels. It is secreted into the bloodstream by the alpha cells, found in the islets of langerhans, in the pancreas. The glucagon-secreting alpha cells surround a core of insulin-secreting beta cells, which reflects the close relationship between the two hormones. Glucagon’s role in the body is to prevent blood glucose levels dropping too low. To do this, it acts on the liver in several ways: It stimulates the conversion of stored glycogen (stored in the liver) to glucose, which can be released into the bloodstream. This process is called glycogenolysis. It promotes the production of glucose from amino acid molecules. This process is called gluconeogenesis. It reduces glucose consumption by the liver so that as much glucose as possible can be secreted into the bloodstream to maintain blood glucose levels. Glucagon also acts on adipose tissue to stimulate the breakdown of fat stores into the bloodstream. How is glucagon controlled? Glucagon works along with the hormone insulin to control blood sugar levels and keep them within set levels. Glucagon is released to stop blood sugar levels dropping too low, while insulin is released to stop blood sugar levels rising too high. Release of glucagon is stimulated by low blood glucose (hypoglycaemia), protein-rich meals and adrenaline (another important hormone for combating low glucose). Release of glucagon is prevented by raised blood glucose and carbohydrate in meals, detected by cells in the pancreas. In the longer-term, glucagon is crucial to the body’s response to lack of food. For example, it encourages the use of stored fat for energy in order to preserve the limited supply of glucose. What happens if I have too much glucagon? Continue reading >>

Pancreatic Regulation Of Glucose Homeostasis

Pancreatic Regulation Of Glucose Homeostasis

Go to: The pancreas is an exocrine and endocrine organ The pancreas has key roles in the regulation of macronutrient digestion and hence metabolism/energy homeostasis by releasing various digestive enzymes and pancreatic hormones. It is located behind the stomach within the left upper abdominal cavity and is partitioned into head, body and tail. The majority of this secretory organ consists of acinar—or exocrine—cells that secrete the pancreatic juice containing digestive enzymes, such as amylase, pancreatic lipase and trypsinogen, into the ducts, that is, the main pancreatic and the accessory pancreatic duct. In contrast, pancreatic hormones are released in an endocrine manner, that is, direct secretion into the blood stream. The endocrine cells are clustered together, thereby forming the so-called islets of Langerhans, which are small, island-like structures within the exocrine pancreatic tissue that account for only 1–2% of the entire organ (Figure 1).1 There are five different cell types releasing various hormones from the endocrine system: glucagon-producing α-cells,2 which represent 15–20% of the total islet cells; amylin-, C-peptide- and insulin-producing β-cells,2 which account for 65–80% of the total cells; pancreatic polypeptide (PP)-producing γ-cells,3 which comprise 3–5% of the total islet cells; somatostatin-producing δ-cells,2 which constitute 3–10% of the total cells; and ghrelin-producing ɛ-cells,4 which comprise <1% of the total islet cells. Each of the hormones has distinct functions. Glucagon increases blood glucose levels, whereas insulin decreases them.5 Somatostatin inhibits both, glucagon and insulin release,6 whereas PP regulates the exocrine and endocrine secretion activity of the pancreas.3, 7 Altogether, these hormones regul Continue reading >>

How Insulin And Glucagon Work

How Insulin And Glucagon Work

Insulin and glucagon are hormones that help regulate the levels of blood glucose, or sugar, in your body. Glucose, which comes from the food you eat, moves through your bloodstream to help fuel your body. Insulin and glucagon work together to balance your blood sugar levels, keeping them in the narrow range that your body requires. These hormones are like the yin and yang of blood glucose maintenance. Read on to learn more about how they function and what can happen when they don’t work well. Insulin and glucagon work in what’s called a negative feedback loop. During this process, one event triggers another, which triggers another, and so on, to keep your blood sugar levels balanced. How insulin works During digestion, foods that contain carbohydrates are converted into glucose. Most of this glucose is sent into your bloodstream, causing a rise in blood glucose levels. This increase in blood glucose signals your pancreas to produce insulin. The insulin tells cells throughout your body to take in glucose from your bloodstream. As the glucose moves into your cells, your blood glucose levels go down. Some cells use the glucose as energy. Other cells, such as in your liver and muscles, store any excess glucose as a substance called glycogen. Your body uses glycogen for fuel between meals. Read more: Simple vs. complex carbs » How glucagon works Glucagon works to counterbalance the actions of insulin. About four to six hours after you eat, the glucose levels in your blood decrease, triggering your pancreas to produce glucagon. This hormone signals your liver and muscle cells to change the stored glycogen back into glucose. These cells then release the glucose into your bloodstream so your other cells can use it for energy. This whole feedback loop with insulin and gluca Continue reading >>

How Insulin And Glucagon Work To Regulate Blood Sugar Levels

How Insulin And Glucagon Work To Regulate Blood Sugar Levels

The pancreas secretes insulin and glucagon, both of which play a vital role in regulating blood sugar levels. The two hormones work in balance. If the level of one hormone is outside the ideal range, blood sugar levels may spike or drop. Together, insulin and glucagon help keep conditions inside the body steady. When blood sugar is too high, the pancreas secretes more insulin. When blood sugar levels drop, the pancreas releases glucagon to bring them back up. Blood sugar and health The body converts carbohydrates from food into sugar (glucose), which serves as a vital source of energy. Blood sugar levels vary throughout the day but, in most instances, insulin and glucagon keep these levels normal. Health factors including insulin resistance, diabetes, and problems with diet can cause a person's blood sugar levels to soar or plummet. Blood sugar levels are measured in milligrams per decilitre (mg/dl). Ideal blood sugar ranges are as follows: Before breakfast - levels should be less than 100 mg/dl for a person without diabetes and 70-130 mg/dl for a person with diabetes. Two hours after meals - levels should be less than 140 mg/dl for a person without diabetes and less than 180 mg/dl for a person with diabetes. Blood sugar regulation Blood sugar levels are a measure of how effectively an individual's body uses glucose. When the body does not convert enough glucose for use, blood sugar levels remain high. Insulin helps the body's cells absorb glucose, lowering blood sugar and providing the cells with the glucose they need for energy. When blood sugar levels are too low, the pancreas releases glucagon. Glucagon forces the liver to release stored glucose, which causes the blood sugar to rise. Insulin and glucagon are both released by islet cells in the pancreas. These cells Continue reading >>

What Organ Regulates The Amount Of Glucose In The Bloodstream?

What Organ Regulates The Amount Of Glucose In The Bloodstream?

Glucose in the bloodstream provides the primary fuel for all body tissues. Blood glucose levels are highest during the digestive period after a meal. Your blood sugar is lowest when the stomach and intestines are empty. Under normal circumstances, the body tightly controls the amount of insulin in your blood. An organ called the pancreas, which is tucked behind the stomach releases the hormones insulin and glucagon to regulate blood sugar levels. Blood sugar regulation is crucial because high and low blood glucose can cause health problems. The pancreas is an elongated organ wide on one end and slender on the other end and measures about 25 centimeters in length. It has dual functions: it releases digestive enzymes, which plays a role in digestion, and it secretes hormones. Prevents High Blood Glucose Insulin plays an integral role in preventing high blood sugar. After you eat a meal and your blood-glucose rises, your pancreas senses your blood-sugar level. When the glucose in your bloodstream becomes high, the pancreas releases insulin into your bloodstream. A small clump of pancreatic cells called the ''islets of Langerhans,'' manufacture insulin. Once the insulin is in your bloodstream, it allows your cells to absorb and use glucose as a fuel source. Mediates Low Blood Sugar When you consume more carbohydrate than your body needs at the time, your body stores the extra glucose as glycogen in the liver. The pancreas continuously monitors your blood sugar levels. When glucose is low, the pancreas releases the hormone glucagon. The glucagon triggers the liver to break down glycogen and converts it back to glucose. The stored glucose enters the bloodstream and raises blood-glucose levels. This allows the body to keep blood sugar levels stable in between meals. Blood Gluc Continue reading >>

More in diabetes