diabetestalk.net

What Causes Ketoacidosis In Type 2 Diabetes?

Diabetic Ketoacidosis - Symptoms

Diabetic Ketoacidosis - Symptoms

A A A Diabetic Ketoacidosis Diabetic ketoacidosis (DKA) results from dehydration during a state of relative insulin deficiency, associated with high blood levels of sugar level and organic acids called ketones. Diabetic ketoacidosis is associated with significant disturbances of the body's chemistry, which resolve with proper therapy. Diabetic ketoacidosis usually occurs in people with type 1 (juvenile) diabetes mellitus (T1DM), but diabetic ketoacidosis can develop in any person with diabetes. Since type 1 diabetes typically starts before age 25 years, diabetic ketoacidosis is most common in this age group, but it may occur at any age. Males and females are equally affected. Diabetic ketoacidosis occurs when a person with diabetes becomes dehydrated. As the body produces a stress response, hormones (unopposed by insulin due to the insulin deficiency) begin to break down muscle, fat, and liver cells into glucose (sugar) and fatty acids for use as fuel. These hormones include glucagon, growth hormone, and adrenaline. These fatty acids are converted to ketones by a process called oxidation. The body consumes its own muscle, fat, and liver cells for fuel. In diabetic ketoacidosis, the body shifts from its normal fed metabolism (using carbohydrates for fuel) to a fasting state (using fat for fuel). The resulting increase in blood sugar occurs, because insulin is unavailable to transport sugar into cells for future use. As blood sugar levels rise, the kidneys cannot retain the extra sugar, which is dumped into the urine, thereby increasing urination and causing dehydration. Commonly, about 10% of total body fluids are lost as the patient slips into diabetic ketoacidosis. Significant loss of potassium and other salts in the excessive urination is also common. The most common Continue reading >>

Primary Hyperlipidemia, Acute Pancreatitis And Ketoacidosis In An Adolescent With Type 2 Diabetes

Primary Hyperlipidemia, Acute Pancreatitis And Ketoacidosis In An Adolescent With Type 2 Diabetes

Krisztina Lukacs1,2*, Laszlo Jozsef Barkai1, Nora Hosszufalusi1, Eva Palik1, Attila J Szabo2 and Laszlo Madacsy2 13rd Department of Medicine, Semmelweis University, 1125 Budapest, Hungary 21st Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary Citation: Lukacs K, Barkai LJ, Hosszufalusi N, Palik E, Szabo AJ, et al. (2016) Primary Hyperlipidemia, Acute Pancreatitis and ketoacidosis in an Adolescent with Type 2 Diabetes. J Diabetes Metab 7:651. doi:10.4172/2155-6156.1000651 Copyright: © 2016 Lukacs K, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Visit for more related articles at Journal of Diabetes & Metabolism Abstract A case is presented of a 15-year-old boy with a past medical history of hyperlipidemia and hypertension. He attended the emergency department with a 3-day history of vomiting, acute abdominal pain, and altered mental status. Laboratory data on admission revealed metabolic acidosis (pH: 7.12, BE: -20.8 mmol/L), high blood glucose level (32.1 mmol/L) and significant hyperlipidemia (cholesterol: 16.3 mmol/L, triglycerides: 21.1 mmol/L). Treatment with electrolytes and volume replacement and intravenous insulin successfully resolved the ketoacidosis, but the abdominal pain and hyperlipidemia remained. Abdominal US and CT scan showed severe necrotizing pancreatitis with a pseudocyst. The laboratory studies showed a Frederickson type V pattern hyperlipidemia. HbA1c was 14.3% (133 mmol/mol), indicating the presence of chronic glucose elevation. Based on the lack of islet cell antibodies and the normal fasting serum C-peptide level, type 2 diabete Continue reading >>

Diabetic Ketoacidosis (dka)

Diabetic Ketoacidosis (dka)

Diabetic ketoacidosis is an acute metabolic complication of diabetes characterized by hyperglycemia, hyperketonemia, and metabolic acidosis. Hyperglycemia causes an osmotic diuresis with significant fluid and electrolyte loss. DKA occurs mostly in type 1 diabetes mellitus (DM). It causes nausea, vomiting, and abdominal pain and can progress to cerebral edema, coma, and death. DKA is diagnosed by detection of hyperketonemia and anion gap metabolic acidosis in the presence of hyperglycemia. Treatment involves volume expansion, insulin replacement, and prevention of hypokalemia. Diabetic ketoacidosis (DKA) is most common among patients with type 1 diabetes mellitus and develops when insulin levels are insufficient to meet the body’s basic metabolic requirements. DKA is the first manifestation of type 1 DM in a minority of patients. Insulin deficiency can be absolute (eg, during lapses in the administration of exogenous insulin) or relative (eg, when usual insulin doses do not meet metabolic needs during physiologic stress). Common physiologic stresses that can trigger DKA include Some drugs implicated in causing DKA include DKA is less common in type 2 diabetes mellitus, but it may occur in situations of unusual physiologic stress. Ketosis-prone type 2 diabetes is a variant of type 2 diabetes, which is sometimes seen in obese individuals, often of African (including African-American or Afro-Caribbean) origin. People with ketosis-prone diabetes (also referred to as Flatbush diabetes) can have significant impairment of beta cell function with hyperglycemia, and are therefore more likely to develop DKA in the setting of significant hyperglycemia. SGLT-2 inhibitors have been implicated in causing DKA in both type 1 and type 2 DM. Continue reading >>

Diabetic Ketoacidosis In Type 1 And Type 2 Diabetes Mellitusclinical And Biochemical Differences

Diabetic Ketoacidosis In Type 1 And Type 2 Diabetes Mellitusclinical And Biochemical Differences

Background Diabetic ketoacidosis (DKA), once thought to typify type 1 diabetes mellitus, has been reported to affect individuals with type 2 diabetes mellitus. An analysis and overview of the different clinical and biochemical characteristics of DKA that might be predicted between patients with type 1 and type 2 diabetes is needed. Methods We reviewed 176 admissions of patients with moderate-to-severe DKA. Patients were classified as having type 1 or type 2 diabetes based on treatment history and/or autoantibody status. Groups were compared for differences in symptoms, precipitants, vital statistics, biochemical profiles at presentation, and response to therapy. Results Of 138 patients admitted for moderate-to-severe DKA, 30 had type 2 diabetes. A greater proportion of the type 2 diabetes group was Latino American or African American (P<.001). Thirty-five admissions (19.9%) were for newly diagnosed diabetes. A total of 85% of all admissions involved discontinuation of medication use, 69.2% in the type 2 group. Infections were present in 21.6% of the type 1 and 48.4% of the type 2 diabetes admissions. A total of 21% of patients with type 1 diabetes and 70% with type 2 diabetes had a body mass index greater than 27. Although the type 1 diabetes group was more acidotic (arterial pH, 7.21 ± 0.12 vs 7.27 ± 0.08; P<.001), type 2 diabetes patients required longer treatment periods (36.0 ± 11.6 vs 28.9 ± 8.9 hours, P = .01) to achieve ketone-free urine. Complications from therapy were uncommon. Conclusions A significant proportion of DKA occurs in patients with type 2 diabetes. The time-tested therapy for DKA of intravenous insulin with concomitant glucose as the plasma level decreases, sufficient fluid and electrolyte replacement, and attention to associated problems remai Continue reading >>

Diabetic Ketoacidosis In Type 2 Diabetes Mellitus

Diabetic Ketoacidosis In Type 2 Diabetes Mellitus

Abstract Diabetic ketoacidosis is usually associated with type 1 diabetes; however, it is increasingly being recognised in type 2 diabetes. The three main mechanisms suggested are: insulinopaenia, elevation in counter-regulatory hormones as a stress response, and increase in free fatty acids. This review aims to highlight the mechanism of diabetic ketoacidosis in type 2 diabetes, the difference compared to its occurrence in type 1 diabetes, the main triggers and its management. The most common mechanism is relative insulin deficiency (insulinopaenia) and usual triggers are non-concordance or infection. Treatment is exactly the same as in type 1 diabetes with intravenous fluid resuscitation and insulin, though the duration of treatment may not be as long. These patients are able to stop insulin following resolution of ketoacidosis and can be managed on oral hypoglycaemic agents. It is important for clinicians to be aware of this condition due to the increasing burden of type 2 diabetes and to avoid unnecessary treatment with insulin in the long term. Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

DKA is usually signaled by high blood sugar levels. The important fact to remember is that without enough insulin, the body cannot burn glucose properly and fat comes out of fat cells. Diabetic Ketoacidosis (DKA) – a condition brought on by inadequate insulin – is a life-threatening emergency usually affecting people with type 1 diabetes. Although less common, it also can happen when you have type 2 diabetes. DKA is usually, but not always, signaled by high blood sugar levels. The important fact to remember is that without enough insulin, the body cannot burn glucose properly and fat comes out of fat cells. As a consequence the excess fat goes to the liver and glucose builds up in the bloodstream. The liver makes ketoacids (also known as ketones) out of the fat. Before long, the body is literally poisoning itself with excess glucose and ketoacids. What causes DKA? A lack of insulin usually due to: Unknown or newly diagnosed cases of type 1 diabetes Missed or inadequate doses of insulin, or spoiled insulin Infection Steroid medications An extremely stressful medical condition DKA is rare in type 2 diabetes – but can develop if someone with type 2 diabetes gets another serious medical condition. Examples of medical conditions associated with DKA in type 2 diabetes are severe infections, acute pancreatitis (inflammation of the insulin producing organ, the pancreas), and treatment with steroids. Symptoms of DKA include: Nausea, vomiting Stomach pain Fruity breath – the smell of ketoacids Frequent urination Excessive thirst Weakness, fatigue Speech problems, confusion or unconsciousness Heavy, deep breathing How do you know if you have DKA? Check your blood or urine for ketones. And if the test is positive, you will need immediate medical care. Treatment includes agg Continue reading >>

What You Should Know About Diabetic Ketoacidosis

What You Should Know About Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a buildup of acids in your blood. It can happen when your blood sugar is too high for too long. It could be life-threatening, but it usually takes many hours to become that serious. You can treat it and prevent it, too. It usually happens because your body doesn't have enough insulin. Your cells can't use the sugar in your blood for energy, so they use fat for fuel instead. Burning fat makes acids called ketones and, if the process goes on for a while, they could build up in your blood. That excess can change the chemical balance of your blood and throw off your entire system. People with type 1 diabetes are at risk for ketoacidosis, since their bodies don't make any insulin. Your ketones can also go up when you miss a meal, you're sick or stressed, or you have an insulin reaction. DKA can happen to people with type 2 diabetes, but it's rare. If you have type 2, especially when you're older, you're more likely to have a condition with some similar symptoms called HHNS (hyperosmolar hyperglycemic nonketotic syndrome). It can lead to severe dehydration. Test your ketones when your blood sugar is over 240 mg/dL or you have symptoms of high blood sugar, such as dry mouth, feeling really thirsty, or peeing a lot. You can check your levels with a urine test strip. Some glucose meters measure ketones, too. Try to bring your blood sugar down, and check your ketones again in 30 minutes. Call your doctor or go to the emergency room right away if that doesn't work, if you have any of the symptoms below and your ketones aren't normal, or if you have more than one symptom. You've been throwing up for more than 2 hours. You feel queasy or your belly hurts. Your breath smells fruity. You're tired, confused, or woozy. You're having a hard time breathing. Continue reading >>

Diabetic Ketoacidosis Explained

Diabetic Ketoacidosis Explained

Twitter Summary: DKA - a major complication of #diabetes – we describe what it is, symptoms, who’s at risk, prevention + treatment! One of the most notorious complications of diabetes is diabetic ketoacidosis, or DKA. First described in the late 19th century, DKA represented something close to the ultimate diabetes emergency: In just 24 hours, people can experience an onset of severe symptoms, all leading to coma or death. But DKA also represents one of the great triumphs of the revolution in diabetes care over the last century. Before the discovery of insulin in 1920, DKA was almost invariably fatal, but the mortality rate for DKA dropped to below 30 percent within 10 years, and now fewer than 1 percent of those who develop DKA die from it, provided they get adequate care in time. Don’t skip over that last phrase, because it’s crucial: DKA is very treatable, but only as long as it’s diagnosed promptly and patients understand the risk. Table of Contents: What are the symptoms of DKA? Does DKA occur in both type 1 and type 2 diabetes? What Can Patients do to Prevent DKA? What is DKA? Insulin plays a critical role in the body’s functioning: it tells cells to absorb the glucose in the blood so that the body can use it for energy. When there’s no insulin to take that glucose out of the blood, high blood sugar (hyperglycemia) results. The body will also start burning fatty acids for energy, since it can’t get that energy from glucose. To make fatty acids usable for energy, the liver has to convert them into compounds known as ketones, and these ketones make the blood more acidic. DKA results when acid levels get too high in the blood. There are other issues too, as DKA also often leads to the overproduction and release of hormones like glucagon and adrenaline Continue reading >>

What Causes Ketoacidosis In People With Diabetes?

What Causes Ketoacidosis In People With Diabetes?

As a type 1 diabetic I am quite familiar (unfortunately) with the signs and symptoms of diabetic ketoacidosis. Diabetic ketoacidosis (DKA) results from dehydration, associated with high blood levels of sugar level and organic acids called ketones. Diabetic ketoacidosis is associated with significant disturbances of the body’s chemistry, which resolve with proper therapy. This usually occurs in people with type 1 diabetes mellitus, but DKA can develop in any person with diabetes. Since type 1 diabetes typically starts before age 25 years, diabetic ketoacidosis is most common in this age group, but it may occur at any age. Males and females are equally affected. What Causes Ketoacidosis ? People with type 1 diabetes do not have enough insulin, a hormone the body uses to break down sugar (glucose) in the blood for energy. When glucose is not available, fat is broken down instead. As fats are broken down, acids called ketones build up in the blood and urine. In high levels, ketones are poisonous. This condition is known as ketoacidosis. Blood glucose levels rise (usually higher than 300 mg/dL) because the liver makes glucose to try to combat the problem. However, the cells cannot pull in that glucose without insulin. DKA is often the first sign of type 1 diabetes in people who do not yet have other symptoms. It can also occur in someone who has already been diagnosed with type 1 diabetes. Infection, injury, a serious illness, missing doses of insulin, or surgery can lead to diabetic ketoacidosis in people with type 1 diabetes. People with type 2 diabetes can also develop DKA, but it is rare. It is usually triggered by a severe illness. Hispanic and African-American people are more likely to have ketoacidosis as a complication of type 2 diabetes. Treatment Options Ketoacid Continue reading >>

Ketoacidosis: An Introduction

Ketoacidosis: An Introduction

SHARE RATE★★★★★ Diabetic ketoacidosis is a dangerous short-term complication of diabetes that results from uncontrolled high blood glucose. A rare complication in people with type 2 diabetes, ketoacidosis occurs when elevated blood glucose persists and is uncorrected, resulting in chemicals called ketones accumulating in the blood. Because a person with diabetes is unable to use glucose for energy, if they are not being treated properly, their body may burn fat instead to get energy. Burning fat causes the production of ketones, which can be toxic if they build up in the blood. While ketoacidosis is a complication that mostly affects people with type 1 diabetes, it can sometimes occur in people with type 2 diabetes.1 What causes ketoacidosis? Ketoacidosis can affect someone with type 2 or type 1 diabetes who is not taking insulin as directed (in some cases, their insulin pump may not be working properly), or someone who is not getting a sufficient amount of insulin, or someone who is taking certain medications or illegal drugs that affect how insulin works. Additionally, a person with type 1 diabetes who has a major health problem, such as a heart attack or infection, is at risk for ketoacidosis. Ketoacidosis may also occur in a person with undiagnosed type 2 diabetes.1 Causes of ketoacidosis Untreated diabetes Body unable to use glucose, burns fat instead causing a build-up of ketones in blood Major illness Certain major illnesses (eg, heart attack, kidney disease, pancreatitis, stroke, infections) Medications or illict drugs Certain medications (eg, glucocorticoids, high-dose thiazide diuretics) or illegal drugs (cocaine) may interfere with carbohydrate metabolism Insulin not taken as directed Failure to take insulin as directed or faulty insulin pump operat Continue reading >>

Distinct Clinical Characteristics And Therapeutic Modalities For Diabetic Ketoacidosis In Type 1 And Type 2 Diabetes Mellitus

Distinct Clinical Characteristics And Therapeutic Modalities For Diabetic Ketoacidosis In Type 1 And Type 2 Diabetes Mellitus

Abstract Patients with type 1 diabetes often develop diabetic ketoacidosis (DKA). Reportedly, DKA in type 2 diabetes has higher mortality despite its limited occurrence. The exact clinical characteristics and therapeutic modalities yielding successful outcomes in DKA type 2 diabetes remain unknown. This retrospective study compared the clinical features and detailed treatment of consecutive type 1 and type 2 diabetes patients hospitalized with DKA between January 2001 and December 2014. We report on 127 patients with type 1 and 74 patients with type 2 diabetes whose DKA was successfully treated. The most frequent precipitating cause for DKA was infectious disease for patients with type 1 diabetes and consumption of sugar-containing beverages for those with type 2 diabetes. Type 2 diabetes patients showed higher mean plasma glucose levels than those with type 1 diabetes (48.4 ± 21.6, vs. 37.1 ± 16.4 mmol/l, P < 0.01) and higher serum creatinine, blood urea nitrogen, and hemoglobin levels, which normalized after DKA resolution. Compared with type 1 diabetes patients, those with type 2 diabetes required distinctly higher daily total insulin dosage (35.9 ± 37.0 U, vs. 20.2 ± 23.3 U, P < 0.01), larger replacement fluid volumes (4.17 ± 2.69 L, vs. 2.29 ± 1.57 L, P < 0.01) and greater potassium supplementation (23.9 ± 36.5 mEq, vs. 11.2 ± 17.9 mEq, P < 0.01) to resolve DKA and reduce plasma glucose level to ≤ 16.7 mmol/l. DKA patients with type 2 diabetes required management with a modified treatment protocol to resolve their profound hyperglycemia and dehydration compared with those with type 1 diabetes. Continue reading >>

Type 1 Diabetes Complications

Type 1 Diabetes Complications

Type 1 diabetes is complicated—and if you don’t manage it properly, there are complications, both short-term and long-term. “If you don’t manage it properly” is an important if statement: by carefully managing your blood glucose levels, you can stave off or prevent the short- and long-term complications. And if you’ve already developed diabetes complications, controlling your blood glucose levels can help you manage the symptoms and prevent further damage. Diabetes complications are all related to poor blood glucose control, so you must work carefully with your doctor and diabetes team to correctly manage your blood sugar (or your child’s blood sugar). Short-term Diabetes Complications Hypoglycemia: Hypoglycemia is low blood glucose (blood sugar). It develops when there’s too much insulin—meaning that you’ve taken (or given your child) too much insulin or that you haven’t properly planned insulin around meals or exercise. Other possible causes of hypoglycemia include certain medications (aspirin, for example, lowers the blood glucose level if you take a dose of more than 81mg) and alcohol (alcohol keeps the liver from releasing glucose). There are three levels of hypoglycemia, depending on how low the blood glucose level has dropped: mild, moderate, and severe. If you treat hypoglycemia when it’s in the mild or moderate stages, then you can prevent far more serious problems; severe hypoglycemia can cause a coma and even death (although very, very rarely). The signs and symptoms of low blood glucose are usually easy to recognize: Rapid heartbeat Sweating Paleness of skin Anxiety Numbness in fingers, toes, and lips Sleepiness Confusion Headache Slurred speech For more information about hypoglycemia and how to treat it, please read our article on hy Continue reading >>

Diabetic Ketoacidosis Symptoms

Diabetic Ketoacidosis Symptoms

What is diabetic ketoacidosis? Diabetic ketoacidosis, also referred to as simply ketoacidosis or DKA, is a serious and even life-threatening complication of type 1 diabetes. DKA is rare in people with type 2 diabetes. DKA is caused when insulin levels are low and not enough glucose can get into the body's cells. Without glucose for energy, the body starts to burn fat for energy. Ketones are products that are created when the body burns fat. The buildup of ketones causes the blood to become more acidic. The high levels of blood glucose in DKA cause the kidneys to excrete glucose and water, leading to dehydration and imbalances in body electrolyte levels. Diabetic ketoacidosis most commonly develops either due to an interruption in insulin treatment or a severe illness, including the flu. What are the symptoms and signs of diabetic ketoacidosis? The development of DKA is usually a slow process. However, if vomiting develops, the symptoms can progress more rapidly due to the more rapid loss of body fluid. Excessive urination, which occurs because the kidneys try to rid the body of excess glucose, and water is excreted along with the glucose High blood glucose (sugar) levels The presence of ketones in the urine Other signs and symptoms of ketoacidosis occur as the condition progresses: These include: Fatigue, which can be severe Flushing of the skin Fruity odor to the breath, caused by ketones Difficulty breathing Type 2 Diabetes Diagnosis, Treatment, Medication What should I do if I think I may have, or someone I know may diabetic ketoacidosis? You should test your urine for ketones if you suspect you have early symptoms or warning signs of ketoacidosis. Call your health-care professional if your urine shows high levels of ketones. High levels of ketones and high blood sug Continue reading >>

> Hyperglycemia And Diabetic Ketoacidosis

> Hyperglycemia And Diabetic Ketoacidosis

When blood glucose levels (also called blood sugar levels) are too high, it's called hyperglycemia. Glucose is a sugar that comes from foods, and is formed and stored inside the body. It's the main source of energy for the body's cells and is carried to each through the bloodstream. But even though we need glucose for energy, too much glucose in the blood can be unhealthy. Hyperglycemia is the hallmark of diabetes — it happens when the body either can't make insulin (type 1 diabetes) or can't respond to insulin properly (type 2 diabetes). The body needs insulin so glucose in the blood can enter the cells to be used for energy. In people who have developed diabetes, glucose builds up in the blood, resulting in hyperglycemia. If it's not treated, hyperglycemia can cause serious health problems. Too much sugar in the bloodstream for long periods of time can damage the vessels that supply blood to vital organs. And, too much sugar in the bloodstream can cause other types of damage to body tissues, which can increase the risk of heart disease and stroke, kidney disease, vision problems, and nerve problems in people with diabetes. These problems don't usually show up in kids or teens with diabetes who have had the disease for only a few years. However, they can happen in adulthood in some people, particularly if they haven't managed or controlled their diabetes properly. Blood sugar levels are considered high when they're above someone's target range. The diabetes health care team will let you know what your child's target blood sugar levels are, which will vary based on factors like your child's age. A major goal in controlling diabetes is to keep blood sugar levels as close to the desired range as possible. It's a three-way balancing act of: diabetes medicines (such as in Continue reading >>

Diabetic Ketoacidosis And Hyperglycemic Hyperosmolar Syndrome

Diabetic Ketoacidosis And Hyperglycemic Hyperosmolar Syndrome

In Brief Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic syndrome (HHS) are two acute complications of diabetes that can result in increased morbidity and mortality if not efficiently and effectively treated. Mortality rates are 2–5% for DKA and 15% for HHS, and mortality is usually a consequence of the underlying precipitating cause(s) rather than a result of the metabolic changes of hyperglycemia. Effective standardized treatment protocols, as well as prompt identification and treatment of the precipitating cause, are important factors affecting outcome. The two most common life-threatening complications of diabetes mellitus include diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar syndrome (HHS). Although there are important differences in their pathogenesis, the basic underlying mechanism for both disorders is a reduction in the net effective concentration of circulating insulin coupled with a concomitant elevation of counterregulatory hormones (glucagon, catecholamines, cortisol, and growth hormone). These hyperglycemic emergencies continue to be important causes of morbidity and mortality among patients with diabetes. DKA is reported to be responsible for more than 100,000 hospital admissions per year in the United States1 and accounts for 4–9% of all hospital discharge summaries among patients with diabetes.1 The incidence of HHS is lower than DKA and accounts for <1% of all primary diabetic admissions.1 Most patients with DKA have type 1 diabetes; however, patients with type 2 diabetes are also at risk during the catabolic stress of acute illness.2 Contrary to popular belief, DKA is more common in adults than in children.1 In community-based studies, more than 40% of African-American patients with DKA were >40 years of age and more than 2 Continue reading >>

More in diabetes