diabetestalk.net

Stem Cell Treatment For Diabetes Type 1 2017

Scientists Move One Step Closer To “curing” Diabetes Using First-ever Stem Cell Implant

Scientists Move One Step Closer To “curing” Diabetes Using First-ever Stem Cell Implant

Clinical trials have begun for ViaCyte's PEC-Direct, an implant that grows insulin-producing cells from stem cells to treat type 1 diabetes patients. If successful, the implant could eliminate the need for these patients to inject themselves with insulin. No More Injections The World Health Organization reports that more than 422 million people worldwide are living with diabetes, a condition that can take two forms. In the first, the body’s immune system attacks cells in the pancreas, preventing the organ from producing enough insulin [type 1 diabetes (T1D)]. In the second, the body doesn’t know how to use the insulin that is produced [type 2 diabetes (TD2)]. T1D accounts for roughly 10 percent of diabetes cases, and unlike T2D, which can often be reversed through lifestyle changes such as weight loss or increased exercise, scientists have yet to figure out how to prevent or cure T1D. Right now, T1D is best managed by balancing insulin doses, but this method can be problematic in high-risk cases, taking time to act. Moreover, patients with hypoglycemia (low glucose) unawareness may not notice when their blood sugar drops dangerously low. Thankfully, researchers all over the world are hard at work looking for a cure that will free T1D patients from their dependence on insulin injections and from risky situations when their levels drop low. Now, one group may have found such a cure. Just last week, California-based company ViaCyte began trials involving two T1D patients who were implanted with the company’s PEC-Direct device. Each of these credit card-sized implants carries cells built from stem cells. These cells are designed to mature inside the human body into the specialized pancreas cells the immune system destroys in those with T1D. The implant is placed just Continue reading >>

Scientists May Have Found A Functional Cure For Type-1 Diabetes

Scientists May Have Found A Functional Cure For Type-1 Diabetes

Type-1 diabetes is a chronic condition that affects an estimated 42 million people worldwide, and occurs when the pancreas produces little to no insulin. Those with the condition must take supplemental insulin so their bodies can process sugars. But now, researchers at ViaCyte, a regenerative medicine company, have some good news: They're working on a therapy based on stem cells that can automatically release insulin into the body when it's needed. The treatment is specifically aimed at patients with high-risk type-1 diabetes. ViaCyte estimates that around 140,000 people in the US and Canada suffer from the condition, which can cause life-threatening events. The use of stem cells to replace pancreatic insulin cells has been tried before, but without much success. ViaCyte's approach shows promise because the stem cells can mature within the body itself through an implant the company calls PEC-Direct. There has already been a round of clinical trials to test whether the stem cells could fully grow into the type of cells necessary to produce insulin -- called islet cells. That was a success. But the number of cells within the implants wasn't enough to actually treat the patients; it was solely to test whether the cells could, in fact, be grown. Now, in coordination with JDRF, an organization that funds type-1 diabetes research, ViaCyte has implanted PEC-Directs into two patients as a trial. It's important to note that this isn't a full cure. It's what ViaCyte President and CEO Paul Laikind calls "a functional cure." It doesn't address and treat the specific causes of the condition. Additionally, patients using this treatment would be required to take immunosuppressive drugs to protect the created cells from the body's immune system, according to New Scientist. Regardless, Continue reading >>

Type 1 Diabetes Stem Cell Therapy Trials Progressing

Type 1 Diabetes Stem Cell Therapy Trials Progressing

Diabetes Stem Cell Treatment Developing Swiftly A recent article published on the Science Dailys online site comes from findings at the Washington University School of Medicine. It reports that its possible to coax stem cells harvested from diabetic patients to convert into cells that secrete insulin*. This is big news. Diabetes stem cell research is continuing to make strides. It could mean that people suffering from Type 1 diabetes may someday not need insulin shots or pumps.* Stem cell treatment for diabetes signals a likely new way to treat Type 1 diabetic sufferers. *The stem cells come from the patients own bodies. Researchers are successfully producing insulin-secreting cells from these donor stem cells, creating the possibility of a targeted, personally tailored diabetes stem cell treatment for Type 1 diabetes patients.* Among the prestigious schools that are conducting diabetes stem cell research are Washington University School of Medicine in St. Louis and Harvard University. Each has successfully coaxed Type 1 diabetes patients stem cells to become insulin-secreting cells.* Why Diabetes Stem Cell Therapy Is Exciting News Type 1 diabetics are not able to produce their own insulin and must rely on repeated insulin injections in order to manage their blood sugar. Thats why diabetes stem cell research and treatments is causing such a stir in the medical and scientific communities. Should official confirmation come through that Type 1 diabetics may soon be able to produce their own insulin-making cells, the lives of millions of people worldwide will be affected. It has already been established through clinical trials that stem cells that have been converted to insulin makers produced insulin while encountering sugar.* That means the pace is quickening in the deve Continue reading >>

Clinical Trials Of Stem Cell-based

Clinical Trials Of Stem Cell-based "functional Cure" For Type 1 Diabetes Underway

2 pictures A human clinical trial examining the safety and efficacy of a "functional cure" for type 1 diabetes is currently underway. Trials of the novel islet cell replacement therapy developed by ViaCyte involve a device containing stem cells being implanted into a patient with type 1 diabetes. It's hoped these cells will then mature into human islet tissue with insulin-producing beta cells that produce insulin on demand. So far, 2017 is proving to be an exciting year for breakthroughs in diabetes research, particularly in regards to treatments for type 1 diabetes. We have seen two very promising developments based in gene therapy, while a human trial for a type 1 diabetes vaccine is currently underway in Finland targeting a viral group known to trigger the disease. The new treatment developed by ViaCyte is being described as a "functional cure" in that it could replace the missing insulin cells in a diabetic patient, as opposed to a more direct "cure" which would address the autoimmune roots of the disease. The treatment being trialed piggybacks off prior working knowledge of islet cell transplantation being successful in patients with type 1 diabetes. For some time, patients with the disease have been treated with pancreatic cells from organ donors, successfully liberating them from insulin injections. "Islet transplants have been used to successfully treat patients with unstable, high-risk type 1 diabetes, but the procedure has limitations, including a very limited supply of donor organs and challenges in obtaining reliable and consistent islet preparations," says trial investigator James Shapiro. "An effective stem cell-derived islet replacement therapy would solve these issues and has the potential to help a greater number of people." The new treatment involves a Continue reading >>

Enhanced Stem Cells For Treating Diabetes Mellitus Type 1 & 2

Enhanced Stem Cells For Treating Diabetes Mellitus Type 1 & 2

Updated November 22, 2017 – In the unfortunate event you or perhaps a family member are coping with diabetes you should be aware of its consequences on the body and mind. Diabetes is usually termed the “silent killer” mainly because it strikes the body slowly and without warning. Newly diagnosed diabetic patients are usually not worried about it since their symptoms are often no more severe than recurrent urination and increased thirst. A number of other individuals have no symptoms at all. Treating Diabetics With Stem Cells As time goes by however, the effects of both kinds of diabetes become increasingly serious and may lead to death. These symptoms include heart disease, eye issues, kidney failure, nerve damage and erectile dysfunction, to name a few. Hypoglycemia (acute low blood sugar) and hyperglycemia (high level of blood sugar) are the key contributors to the effects of diabetes. According to recent research, some of the oral diabetes medications can also help contribute to heart malfunction.(Kao and Chen 2012)* That is exactly why it’s important that women and men who are clinically diagnosed as “diabetic” immediately seek treatment to relieve hypoglycemia and hyperglycemia. These conditions often trigger the more harmful, degenerative ailments. The regeneration center can help treat DM with our innovative enriched and expanded Mesenchymal cells treatment for Diabetes safely and without any artificial medicines or need for regular insulin dependency.(Yong Zhao et al. 2013)* Reverse Hyperglycemia with Insulin Producing Beta-Cells Stem Cell treatments for diabetes fights the disease at its origins in the pancreas. Decreasing hyperglycemia as well as associated complications (see above). According to recent research, it can also relieve hypoglycemia or Continue reading >>

4 Promising New And Upcoming Clinical Trials For Type 1 Diabetes

4 Promising New And Upcoming Clinical Trials For Type 1 Diabetes

Type 1 Diabetes is a disease where your own immune system mistakenly attack your “pancreatic islets”- small clusters of cells in the pancreas that contain insulin-producing “beta” cells. There is currently no cure for Type 1 Diabetes, although it can be managed. Type 1 diabetics must carefully time when and what they eat, monitor their blood glucose by pricking their fingers, and routinely inject themselves with insulin. This life-long struggle can be very annoying for patients. Furthermore, even with careful management, long-term complications generally develop over time. These complications include kidney failure, damage to the retina, heart disease, and foot ulcers. This highlights the need to find better ways to manage the disease. In this article, we have summarised 4 clinical trials for Type 1 Diabetes. We explain the scientific reasoning behind each treatment and what the current findings are (including any potential side effects). NOTE: We did not receive any money from any of the following companies to write this article, nor did they ask us to publicise them. The trials are here because they stemmed from solid scientific research. Before taking any actions, please consult your healthcare provider to determine whether or not you might benefit from these treatments. 1) The “T-Rex” study (T-regulatory cell therapy), Caladrius Biosciences, USA What is the scientific basis of the study? The name of the clinical trial is a pun on T-regs, short for “T-Regulatory cells”, which are a type of white blood cells involved in your immune system. T-regs distinguish which cells are harmful to your body, and which cells are not. So, they are crucial in preventing your immune system from mistakenly destroying your own healthy cells. As mentioned earlier, this is Continue reading >>

Stem Cell Therapy For Type 1 Diabetes

Stem Cell Therapy For Type 1 Diabetes

For over 20 years autologous hematopoietic stem cell treatment (AHSCT) has been a therapy for autoimmune diseases such as multiple sclerosis, rheumatoid arthritis and lupus; however, the exact mechanism of action remains unclear. Recent clinical research has also been exploring the use of stem cell therapy for type 1 diabetes, another autoimmune disease which affects over 422 million individuals globally. Type 1 diabetes, formerly known as juvenile or insulin-dependent diabetes, is a chronic condition where little or no insulin is produced by the pancreas. Immune cells attack pancreatic beta cells which produce insulin, leading to inflammation. Insulin is an essential hormone for energy production as it enables the breakdown of sugars to enter the cells and produce energy. The onset of type 1 diabetes occurs when significant inflammation damages beta cells and results in insufficient maintenance of glucose haemostasis (balance of insulin and glucagon to maintain blood glucose levels). Therapies currently used in type 1 diabetes treatment include insulin administration, blood glucose monitoring and screening for common comorbidities and diabetes-related complications. However, these treatments fail to reduce the damage on a patients immune system. The use of autologous hematopoietic stem cells as a potential type 1 diabetes therapy is based upon the ability of the stem cells to reset the immune system. Autologous hematopoietic stems cells are retrieved from a patients own bone marrow or peripheral blood (blood which circulates the body and contains red blood cells, white blood cells and platelets) and after conditioning are injected intravenously. A recent study by Ye and colleagues published in Stem Cell Research & Therapy (2017) investigated the effects AHSCT had on t Continue reading >>

Researchers Study Cure For Type 1 Diabetes In Stem Cell Transplantations

Researchers Study Cure For Type 1 Diabetes In Stem Cell Transplantations

Clinical trial shows promising results from risky procedure, identifies path for personalized therapies DUARTE, Calif. — Some type 1 diabetes (T1D) patients can be cured from the disease, at least for a number of years, with a stem cell transplant – those were the results of a clinical trial monitored by City of Hope’s Bart Roep, Ph.D., the Chan Soon-Shiong Shapiro Distinguished Chair in Diabetes and professor/founding chair, Department of Diabetes Immunology. The results were published recently in the journal, Frontiers in Immunology. “This means we can cure type 1 diabetes, be it with a risky therapy — although one that is also very successful in cancer, and one for which City of Hope is a world-renowned expert, with more than 14,000 patients having received similar treatment for blood cancers,” said Roep, director of The Wanek Family Project for Type 1 Diabetes, which aims to find a cure for T1D in six years. “We now understand stem cell transplants can succeed in treating diabetes for some, but not in others, and we can predict either outcome before the therapy is administered by 'reading' the immune signature of the patient with a novel nanotechnology that I developed.” An international team of researchers, including Roep, conducted the trial in Brazil. It showed that autologous hematopoietic stem cell transplantation (AHSCT), which uses a person’s own stem cells, increases C-peptide levels — that show how much insulin is being made by the pancreas — and induces insulin independence in patients with T1D. This is possible because the transplanted stem cells are able to balance the immune system. The study also aimed to understand why some patients saw long-term clinical benefit from the transplantation while others did not. Twenty-one T1D patie Continue reading >>

Stem Cell Implant Is Being Trialled To “cure

Stem Cell Implant Is Being Trialled To “cure" Type 1 Diabetes

A groundbreaking attempt to "cure" Type 1 diabetes with stem cells began last week. Embryonic stem cell implants were given to two people, one in the US and one in Canada, with high-risk Type 1 diabetes. The researchers hope that this will help the patients manage the condition. The stem cells, developed by private company ViaCyte, are implanted underneath the patient's forearm, where they take about three months to mature into islet cells. In the pancreas, these cells are responsible for the production of insulin. In people with Type 1 diabetes, these cells are attacked by the body’s own immune system. “If it works, we would call it a functional cure,” Paul Laikind of Viacyte told New Scientist. “It’s not truly a cure because we wouldn’t address the autoimmune cause of the disease, but we would be replacing the missing cells.” A smaller implant has already been trialled on 19 people for safety and the company expects to extend the trial to 40 more people later this year, in order to understand both the safety and efficacy of the full-size implant. ViaCyte would like to get preliminary results during the first half of 2018 and to know if the system works between six and 12 months later. “Islet transplants have been used to successfully treat patients with unstable, high-risk Type 1 diabetes, but the procedure has limitations, including a very limited supply of donor organs and challenges in obtaining reliable and consistent islet preparations,” trial investigator James Shapiro, from the University of Alberta, said in a statement. “An effective stem cell-derived islet replacement therapy would solve these issues and has the potential to help a greater number of people.” If a success, the implant will improve the lives of the patients as they won’t Continue reading >>

Success Of Stem Cell Therapy For Diabetes Depends On Pre-transplant Immune Condition

Success Of Stem Cell Therapy For Diabetes Depends On Pre-transplant Immune Condition

Success of stem cell therapy for diabetes depends on pre-transplant immune condition An innovative method for treating type 1 diabetes based on the transplantation of hematopoietic stem cells taken from the patient's own bone marrow began undergoing testing in Brazil 13 years ago. The results were highly variable. While some of the volunteers were able to stop self-injecting insulin for more than a decade, others had to resume use of the medication only a few months after receiving the experimental treatment. A possible explanation for this discrepancy in the clinical outcome for the 25 patients included in the study was presented in an article published recently in the journal Frontiers in Immunology. According to the authors, the duration of the therapeutic effect was shorter in the patients whose immune systems had attacked the pancreatic cells more aggressively in the pre-transplantation period. This research was conducted at the Center for Cell-Based Therapy (CTC) in Brazil. Initially led by immunologist Julio Voltarelli, who died in March 2012, it is proceeding under the coordination of researchers Maria Carolina de Oliveira Rodrigues and Belinda Pinto Simes. "Because type 1 diabetes is an autoimmune disease, the aim of the treatment is to 'switch off' the immune system temporarily using chemotherapy drugs and 'restart' it by means of the transplantation of autologous hematopoietic stem cells , which can differentiate into every kind of blood cell," Rodrigues explained. By the time the symptoms of type 1 diabetes appear, she added, around 80 percent of the patient's pancreatic islets have already been damaged. If the autoimmune aggression is interrupted at this point, and the remaining cells are protected, the patient can produce an amount of insulin that is smal Continue reading >>

Stem Cell Therapy For Diabetes Type 1 And Diabetes Type 2

Stem Cell Therapy For Diabetes Type 1 And Diabetes Type 2

New treatments and advances in research are giving new hope to people affected by Diabetes Type 1 and Diabetes Type 2. StemGenex Medical Group provides adult stem cell Diabetes therapies to help those with unmet clinical needs achieve optimum health and better quality of life. Mesenchymal stem cell therapy for Diabetes Type 1 & Diabetes Type 2 may help patients who don’t respond to typical drug treatment, want to reduce their reliance on medication, or are looking to try stem cell therapy before starting drug treatment. To learn more about becoming a patient and receiving adult stem cell therapy through StemGenex Medical Group, please contact one of our Patient Advocates at (800) 609-7795. Below are some frequently asked questions about stem cell therapy for Diabetes Type 1 and Diabetes Type 2. Continue reading >>

New Diabetes Treatment Teaches Rogue Immune Cells To Behave

New Diabetes Treatment Teaches Rogue Immune Cells To Behave

(Getty Images) A treatment targeting wayward immune cells in people with Type 1 or Type 2 diabetes may help even years later, a new study finds. For the treatment, researchers take blood from a person with diabetes and separate out the immune system cells (lymphocytes). They briefly expose those cells to stem cells from umbilical cord blood from an unrelated infant. Then they return the lymphocytes to the patient's body. The researchers have dubbed this treatment "stem cell educator therapy," because when exposed to the stem cells, the errant lymphocytes seem to re-learn how they should behave. "Stem cell educator therapy is a safe approach" with long-term effectiveness, said the study's lead author, Dr. Yong Zhao, an associate scientist at Hackensack University Medical Center in New Jersey. Type 1 diabetes, an autoimmune disease, occurs when the body's immune system cells mistakenly attack the insulin-producing (beta) cells in the pancreas. This leaves people with Type 1 diabetes with little to no insulin. They need insulin injections to survive. Researchers have long thought that any cure for Type 1 diabetes would have to stop the autoimmune attack, while regenerating or transplanting beta cells. But Zhao and his team developed a new approach to the problem — educating the immune cells that had been destroying beta cells so they stop attacking. In Type 2 diabetes, Zhao said immune cell dysfunction is responsible for chronic inflammation that causes insulin resistance. When someone is insulin-resistant, their body's cells can't properly use insulin to usher sugar from foods into cells for use as energy. Instead, the sugar builds up in the blood. The researchers hoped the stem cell educator would help decrease insulin resistance for people with Type 2 diabetes. In ear Continue reading >>

Researchers May Have Just ‘cured’ Type 1 Diabetes With Stem Cells

Researchers May Have Just ‘cured’ Type 1 Diabetes With Stem Cells

If successful, this new device utilizing stem cells will be the “functional cure” for type 1 diabetes. Type 1 diabetes is a tough condition—over 42 million people in the world have to keep up with daily treatments and periodical injections in efforts to manage it. Even then, the brain, heart, and cardiovascular system are put at risk for the sake of type 1 diabetes treatments. For nearly two decades, researchers in the healthcare industry have tried finding a way for stem cells to replace traditional treatments. They have worked endlessly to figure out how to get stem cells to function inside the body. That could all be changing soon if one San Diego-based medical device company, Viacyte, succeeds in developing a device that uses stem cells to treat, and in a way cure, the condition for good. The PEC–Direct Implant Viacyte has developed a credit-card sized implant called PEC-Direct which uses pancreatic progenitor cells—derived from stem cells—that can mature inside the body into specialized islet cells that are destroyed by type 1 diabetes. The implant is placed just below the skin and releases insulin when blood sugar levels get too high. In August 2017, two people with type 1 diabetes were the first to have the PEC-Direct implanted in hopes that the stem cells will treat their condition. A third recipient is expected to receive the implant later this year. “If it works, we would call it a functional cure,” said Paul Laikind, President and CEO of Viacyte. How It Works Once implanted, the pores in the outer fabric of the device allow blood vessels to work their way in, nourishing the stem cells. After three months, the stem cells become islet cells which then monitor the body’s blood sugar, producing insulin when needed. “It’s not truly a cure bec Continue reading >>

Stories Of Hope: A Stem Cell Therapy For Diabetes

Stories Of Hope: A Stem Cell Therapy For Diabetes

Home Stories of Hope: A Stem Cell Therapy for Diabetes Stories of Hope: A Stem Cell Therapy for Diabetes The last thing Maria Torres expected was to be diagnosed with type 2 diabetes. She exercised, ate well and kept her weight under control. There had to be some mistake. Maria asked her doctor to repeat the tests, but the results were the same. At 43, for reasons no one could fully explain, she had diabetes, and her life was going to change dramatically. It really scared me, says Maria. I thought I was going to die soon. That Maria doubted her diagnosis is no surprise. Type 2 diabetes is often associated with obesity, and she didnt fit the profile. Most likely, some undiscovered genetic component had made her susceptible to the disease. Regardless, she now had to rework her life to manage the diabetes. Her cells had developed a condition called insulin resistance. Though her pancreas was producing insulin, which tells cells to take in blood sugar, the cells were not cooperating. As a result, glucose was accumulating in her blood, putting her at risk for heart disease, nerve damage, eye issues and a host of other problems. To help her cells absorb glucose, she needs regular insulin injections. Maria injects the hormone five times a day and must often measure her blood sugar levels even more frequently. Faithfully following this regimen has kept her alive for 20 years, but insulin is not a cure. Even with the regular injections, she faces dramatic mood swings and more serious complications as glucose levels rise and fall. One of the most promising strategies to cure diabetes is to transplant beta cells, which sense blood sugar levels and produce insulin to reduce them. Patients with type 1 diabetes would benefit because new beta cells would replace the ones theyd lost t Continue reading >>

Viacyte Treats First Patients In Pec-direct Stem Cell Trial For Type 1diabetes

Viacyte Treats First Patients In Pec-direct Stem Cell Trial For Type 1diabetes

ViaCyte treats first patients in PEC-Direct stem cell trial for type 1diabetes Today, ViaCyte shared an update on its latest clinical trial for type 1 diabetes (T1D). The company is based in San Diego and is developing two stem cell-based products that attempt to replace the pancreatic beta islet cells that are attacked by the immune system of patients with T1D. Their first product, called VC-01 or PEC-Encap, is an implantable device containing embryonic stem cells that develop into pancreatic progenitor cells, which are precursors to the islet cells destroyed by T1D. The hope is that when this device is transplanted under a patients skin, the progenitor cells will develop into mature insulin-secreting cells that can properly regulate the glucose levels in a patients blood. Because the cells are encapsulated in a protective semi-permeable membrane, hormones and nutrients can pass in and out of the device, but the implanted cells are guarded against the patients immune system. VC-01 is currently being tested in a Phase 1 clinical trial that is funded CIRM . ViaCyte now has a second product called VC-02, or PEC-Direct, that also transplants pancreatic progenitors but in a device that allows a patients blood vessels to make direct contact with the implanted cells. This direct vascularization approach is being tested in patients that are at high risk for severe complications associated with T1D including hypoglycemia unawareness a condition where patients fail to recognize when their blood glucose level drops to dangerously low levels because the typical symptoms of hypoglycemia fail to appear. ViaCytes PEC-Direct device allows a patients blood vessels to integrate and make contact with the transplanted beta cells. Today, the ViaCyte announced in a press release that it ha Continue reading >>

More in diabetes