diabetestalk.net

Is Type 1 Or 2 Diabetes Genetic?

Diabetes Mellitus Type 2

Diabetes Mellitus Type 2

Diabetes mellitus type 2 (also known as type 2 diabetes) is a long-term metabolic disorder that is characterized by high blood sugar, insulin resistance, and relative lack of insulin.[6] Common symptoms include increased thirst, frequent urination, and unexplained weight loss.[3] Symptoms may also include increased hunger, feeling tired, and sores that do not heal.[3] Often symptoms come on slowly.[6] Long-term complications from high blood sugar include heart disease, strokes, diabetic retinopathy which can result in blindness, kidney failure, and poor blood flow in the limbs which may lead to amputations.[1] The sudden onset of hyperosmolar hyperglycemic state may occur; however, ketoacidosis is uncommon.[4][5] Type 2 diabetes primarily occurs as a result of obesity and lack of exercise.[1] Some people are more genetically at risk than others.[6] Type 2 diabetes makes up about 90% of cases of diabetes, with the other 10% due primarily to diabetes mellitus type 1 and gestational diabetes.[1] In diabetes mellitus type 1 there is a lower total level of insulin to control blood glucose, due to an autoimmune induced loss of insulin-producing beta cells in the pancreas.[12][13] Diagnosis of diabetes is by blood tests such as fasting plasma glucose, oral glucose tolerance test, or glycated hemoglobin (A1C).[3] Type 2 diabetes is partly preventable by staying a normal weight, exercising regularly, and eating properly.[1] Treatment involves exercise and dietary changes.[1] If blood sugar levels are not adequately lowered, the medication metformin is typically recommended.[7][14] Many people may eventually also require insulin injections.[9] In those on insulin, routinely checking blood sugar levels is advised; however, this may not be needed in those taking pills.[15] Bariatri Continue reading >>

Defining The Genetic Contribution Of Type 2 Diabetes Mellitus

Defining The Genetic Contribution Of Type 2 Diabetes Mellitus

Diabetes mellitus (DM) affects over 150 million people world wide, with a prevalence that varies markedly from population to population.1 Estimates predict that almost 300 million people will suffer from DM by 2025 (fig 1) with the vast majority being cases of diabetes mellitus type 2. Many risk factors have been identified which influence the prevalence (total number of cases as a percentage of the total population) or incidence (total number of new cases per year as a percentage of the total population). Factors of particular importance are a family history of diabetes mellitus, age, overweight, increased abdominal fat, hypertension, lack of physical exercise, and ethnic background. Several biochemical markers have also been identified as risk factors, including fasting hyperinsulinaemia, increased fasting proinsulin, and decreased HDL cholesterol.2 Both diabetes mellitus types 1 and 2 show a familial predisposition, which is a strong indication for the involvement of genes in people's susceptibility to the disease. However, the aetiology underlying types 1 and 2 is different and different genes are likely to be involved in each type of diabetes mellitus. The following discussion focuses on a genetic dissection of type 2 diabetes mellitus. The two most common forms of diabetes mellitus, type 1 and type 2, are both characterised by raised plasma glucose levels. Normal glucose homeostasis depends on the balance between glucose production by the liver and kidneys and glucose uptake by the brain, kidneys, muscles, and adipose tissue. Insulin, the predominant anabolic hormone involved, increases the uptake of glucose from the blood, enhances its conversion to glycogen and triglyceride, and also increases glucose oxidation. Plasma glucose levels are normally kept within a s Continue reading >>

Genetic Link Between Type 1 And Type 2 Diabetes

Genetic Link Between Type 1 And Type 2 Diabetes

Type 1 and Type 2 diabetes (T1D and T2D) are complex diseases characterized by insulin signaling defects resulting from either autoimmune deregulation or metabolic dysfunction, respectively. Both cause disruption of blood glucose regulation and can lead to significant systemic effects. Despite the physiological distinctions underlying disease development, there are commonalities between T1D and T2D; in T1D, pancreatic beta cells are targeted by the autoimmune system, while in T2D there is gradual, progressive beta cell mass decline. There are some shared genetic risk factors associated with both conditions, but distinguishing between genetic versus secondary causes related to beta cell failure has been challenging. A new study this week in Nature Genetics reports on a T1D model and the identification of genetic loci underlying beta cell fragility, independent of an immune component. TD1 non-obese diabetic (NOD) mice expressing the insHEL transgene, which causes unfolded protein stress, developed diabetes, and the authors determined that this was not dependent on adaptive immunity. They characterize mutations in two genes, Glis3 and Xrcc4, which compound the stress effects, leading to apoptosis. Changes in these molecular pathways are likewise reflected in islet cells of diabetes patients. This mouse model, therefore, could be useful in study possible targets to prevent beta cell loss. We spoke with lead author, Adrian Liston, to get some background on this work. The discovery that NODk mice with the insHEL transgene develop diabetes is described as being serendipitous. What were your initial thoughts about this? At the time we first found that NODk.insHEL male mice developed diabetes I was actually working on immune defects in NOD mice, rather than beta cell defects. My Continue reading >>

Genetics Of Type 1 Diabetes Mellitus

Genetics Of Type 1 Diabetes Mellitus

At least 20 different chromosomal regions have been linked to type 1 diabetes (T1D) susceptibility in humans, using genome screening, candidate gene testing, and studies of human homologues of mouse susceptibility genes. The largest contribution from a single locus (IDDM1) comes from several genes located in the MHC complex on chromosome 6p21.3, accounting for at least 40% of the familial aggregation of this disease. Approximately 30% of T1D patients are heterozygous for HLA-DQA1*0501–DQB1*0201/DQA1*0301–DQB1*0302 alleles (formerly referred to as HLA-DR3/4 and for simplification usually shortened to HLA-DQ2/DQ8), and a particular HLA-DQ6 molecule (HLA-DQA1*0102–DQB1*0602) is associated with dominant protection from the disease. There is evidence that certain residues important for structure and function of both HLA-DQ and DR peptide-binding pockets determine disease susceptibility and resistance. Independent confirmation of the IDDM2 locus on chromosome 11p15.5 has been achieved in both case-control and family-based studies, whereas associations with the other potential IDDM loci have not always been replicated. Several possibilities to explain these variable results from different studies are discussed, and a key factor affecting both linkage and association studies is that the genetic basis of T1D susceptibility may differ between ethnic groups. Some future strategies to address these problems are proposed. These include increasing the sample size in homogenous ethnic groups, high throughput genotyping and genomewide linkage disequilibrium (LD) mapping to establish disease associated ancestral haplotypes. Elucidation of the function of particular genes (‘functional genomics’) in the pathogenesis of T1D will be a most important element in future studies in th Continue reading >>

Is Type 2 Diabetes Caused By Genetics?

Is Type 2 Diabetes Caused By Genetics?

Diabetes is a complex condition. Several factors must come together for you to develop type 2 diabetes. For example, obesity and a sedentary lifestyle play a role. Genetics can also influence whether you’ll get this disease. If you’ve been diagnosed with type 2 diabetes, there’s a good chance that you’re not the first person with diabetes in your family. According to the American Diabetes Association, your risk of developing type 2 diabetes is: 1 in 7 if one of your parents was diagnosed before the age of 50 1 in 13 if one of your parents was diagnosed after the age of 50 1 in 2, or 50 percent, if both your parents have diabetes Several gene mutations have been linked to the development of type 2 diabetes. These gene mutations can interact with the environment and each other to further increase your risk. Type 2 diabetes is caused by both genetic and environmental factors. Scientists have linked several gene mutations to a higher diabetes risk. Not everyone who carries a mutation will get diabetes. But many people with diabetes do have one or more of these mutations. It can be difficult to separate genetic risk from environmental risk. The latter is often influenced by your family members. For example, parents with healthy eating habits are likely to pass them on to the next generation. On the other hand, genetics plays a big part in determining weight. Sometimes behaviors can’t take all the blame. Studies of twins suggest that type 2 diabetes might be linked to genetics. These studies were complicated by the environmental influences that also affect type 2 diabetes risk. To date, numerous mutations have been shown to affect type 2 diabetes risk. The contribution of each gene is generally small. However, each additional mutation you have seems to increase your Continue reading >>

Which Type Of Diabetes Is More Likely To Be Inherited And Why?

Which Type Of Diabetes Is More Likely To Be Inherited And Why?

Question: Which type of diabetes is more likely to be inherited and why? Answer: Type 1 diabetes typically occurs in childhood, while type 2 diabetes usually develops in adults. However, some adults develop a form of diabetes that looks very similar to type 1 diabetes, and now with the huge increase in obesity, many children and adolescents are getting type 2 diabetes. Now, both type 1 and type 2 diabetes have a genetic component; that means of course, that they tend to run in families. However, we often regard diseases that develop in childhood as being more likely to be due to genetics. But this is not the case for diabetes, and in fact, studies show that type 2, which mostly commonly develops in adulthood, seems to have a greater genetic basis than the childhood form of type 1 diabetes. For example, as you know, identical twins share 100 percent of their genetic material; however, if one twin has type 1 diabetes, the chance of that the other twin will develop it is only 10 to 20 percent. In contrast, if one twin has type 2, or the adult form of diabetes, the other twin has up to a 90 percent chance of developing type 2 diabetes. In type 2 diabetes, we know that overeating and lack of physical activity are very important contributors. Meanwhile, for type 1 diabetes, it's more the exposure to toxins in the environment, possibly viruses, and other external factors that can increase risk to this form of diabetes. Next: What Is The Risk That A Child Will Develop Diabetes If One Or Both Parents Are Diabetic? Previous: What Are The Meanings and Significance Of These Terms Related To Diabetes: 'Beta Cells,' 'Islets,' 'Glucagon,' and 'Amylin'? Continue reading >>

Diabetes Mellitus Type 1 Inheritance

Diabetes Mellitus Type 1 Inheritance

Type 1 diabetes is an inherited condition and individuals with a first degree relative who has the condition are at an increased risk of developing the condition. Details regarding the risk of inheriting type 1 diabetes are given below: In men with type 1 diabetes, the risk of their child also developing the condition is one in 17. In women with type 1 diabetes who have their baby before the age of 25, the risk of the child developing the condition is one in 25. If she has her baby after the age of 25, the risk falls to 1 in 100. If both parents have type 1 diabetes, the risk of the condition developing in offspring varies between 1 in 4 and 1 in 10. The risks are somewhat increased if one of the parents developed type 1 diabetes before the age of 11. Around 1 in 7 people with type 1 diabetes suffer from a condition called type 2 polyglandular autoimmune syndrome and these individuals have parathyroid and adrenal gland disorders in addition to type 1 diabetes. If one of the parents has type 2 polyglandular autoimmune syndrome, the risk that the child will inherit the condition, including type 1 diabetes, is 50%. Genes associated with type 1 diabetes Some genes have repeatedly been identified in people with type 1 diabetes. Among white individuals, examples of such genes include the HLA-DR3 or HLA-DR4 genes. Carrying these genes raises the risk that offspring will inherit type 1 diabetes. Children born with the HLADR3/4-DQ8 genotype make up nearly 50% of all children who develop type 1 diabetes before they are 5 years of age. Some studies on other ethnic groups have shown that similar risks are associated with the HLA-DR7 genotype among African Americans and with the HLA-DR9 gene among Japanese individuals. Genetic studies have also located HLA class II genes at 6p21 and Continue reading >>

Would You Eat Food That Was Genetically Modified?

Would You Eat Food That Was Genetically Modified?

Not only do I eat GMOs, I willingly inject myself with GMOs 5–8 times a day! It is my secret to a long life. “What?” I can hear your gasping disbelief from here. “Why would you do something so harmful to yourself? Don't you realize how BAD GMOS are?” I have Type 1 diabetes. For those of you who don't know, it is an autoimmune disease that causes the islet cells of the pancreas (they are responsible for producing insulin) to die off. When your body cannot produce its own insulin, you must inject man made insulin several times a day. If you don't, your blood glucose levels will rise to dangerous levels and your blood chemistry goes wonky (scientific medical term). Without insulin, your blood begins burning fat and muscle for fuel instead of carbs. The acidic byproduct is called ketones. You may have heard of low-carb diets that suggest you check your urine for ketones and applaud you if you manage to get a pink square on the ketone strip. However, with Type 1, that pink square is terrifying. It means you are going into ketoacidosis, which is a life threatening emergency. Without treatment, you will die. Quickly. If you have Type 1 diabetes (only loosely related to Type 2 diabetes, which is what most people recognize as diabetes) you must be on insulin. No matter how healthy your diet. No matter how few carbs you eat. No matter how thin and fit you are. You must be on insulin. Commercially produced insulin used to be made from cows and pigs. Now it is created in a lab, by genetically modifying yeast spores. Lab created insulin is the perfect example of a genetically modified organism. Without GMOS, I would be dead within a week or two. Yes, I allow GMOS into my body. Gladly. Continue reading >>

Type 2 Diabetes

Type 2 Diabetes

Type 2 diabetes is a progressive condition in which the body becomes resistant to the normal effects of insulin and/or gradually loses the capacity to produce enough insulin in the pancreas. We do not know what causes type 2 diabetes. Type 2 diabetes is associated with modifiable lifestyle risk factors. Type 2 diabetes also has strong genetic and family related risk factors. Type 2 diabetes: Is diagnosed when the pancreas does not produce enough insulin (reduced insulin production) and/or the insulin does not work effectively and/or the cells of the body do not respond to insulin effectively (known as insulin resistance) Represents 85–90 per cent of all cases of diabetes Usually develops in adults over the age of 45 years but is increasingly occurring in younger age groups including children, adolescents and young adults Is more likely in people with a family history of type 2 diabetes or from particular ethnic backgrounds For some the first sign may be a complication of diabetes such as a heart attack, vision problems or a foot ulcer Is managed with a combination of regular physical activity, healthy eating and weight reduction. As type 2 diabetes is often progressive, most people will need oral medications and/or insulin injections in addition to lifestyle changes over time. Type 2 diabetes develops over a long period of time (years). During this period of time insulin resistance starts, this is where the insulin is increasingly ineffective at managing the blood glucose levels. As a result of this insulin resistance, the pancreas responds by producing greater and greater amounts of insulin, to try and achieve some degree of management of the blood glucose levels. As insulin overproduction occurs over a very long period of time, the insulin producing cells in the pan Continue reading >>

Diabetes And Genetics

Diabetes And Genetics

Tweet Genetics play a strong role in the chances of developing both type 1 and type 2 diabetes. Other factors include environment and lifestyle. Diabetes is an increasingly common chronic condition affecting millions of people in the UK alone. Diabetes and genetic risk The risk of developing diabetes is affected by whether your parents or siblings have diabetes. The likelihood of developing type 1 diabetes or type 2 diabetes differ, as you can see below. Type 1 diabetes and genetics - average risks Mother with diabetes increases risk of diabetes by 2% Father with diabetes increases risk of diabetes by 8% Both parents with diabetes increases risk by 30% Brother or sister with diabetes increases risk by 10% Non-identical twin with diabetes increases risk by 15% Identical twin with diabetes increases risk by 40% Type 2 diabetes and genetics - average risks If either mother of father has diabetes increases risk of diabetes by 15% If both mother and father have diabetes increases risk by 75% If non-identical twin has diabetes increases risk by 10% If identical twin has diabetes increases risk by 90% Some other forms of diabetes may be directly inherited, including maturity onset diabetes in the young (MODY) and diabetes due to mitochondrial DNA mutation. However, neither type 1 or type 2 diabetes may be entirely genetically determined. Experts believe that environmental factors act as either ‘initators’ or ‘accelerators.’ Several genes are known as susceptibility genes, meaning that if an individual is carrying this gene they face greater risk of developing diabetes. Similarly, other genes provide greater immune tolerance for non-diabetics. My family have type 2 diabetes, will I get it? Type 2 diabetes is, in part, inherited. First degree relatives of individuals wit Continue reading >>

What Is The Main Cause Of Diabetes?

What Is The Main Cause Of Diabetes?

There is no common diabetes cause that fits every type of diabetes. The causes of diabetes can depend on a variety of factors like your genetic makeup, family history, ethnicity, health, and also on environmental factors. Some of the known causes of diabetes treatment are: Type 1 diabetes This type of diabetes is caused by the immune system destroying the beta cells in the pancreas that make insulin. This leaves the body without enough insulin to function normally. Some other causes of type 1 disease also include viral or bacterial infection, release of chemical toxins within food, eating more food than usual, etc. Type 2 diabetes This type of diabetes generally occurs when the pancreas does not produce any insulin, or produce very little insulin or the body stops responding to insulin, a condition called insulin resistance. Some other causes of type 2 diabetes are obesity, living a sedentary life, increasing age, bad diet, pregnancy and illness etc. Gestational diabetes This type of diabetes generally affects females during pregnancy, the cause of which has still not been known accurately. However the number of risk factors that can lead to this disease are being overweight, family history of gestational diabetes, suffering from polycystic ovary syndrome or even having a large baby weighing over 9lbs. Some other diabetes causes are: Cushing’s syndrome- This syndrome increases the production of the cortisol hormone, which results in increased blood glucose levels. Glucagonoma- Patients with glucagonoma may experience diabetes because of a lack of equilibrium between levels of insulin production and glucagon production Continue reading >>

Genetics Of Diabetes

Genetics Of Diabetes

You've probably wondered how you got diabetes. You may worry that your children will get it too. Unlike some traits, diabetes does not seem to be inherited in a simple pattern. Yet clearly, some people are born more likely to get diabetes than others. What leads to diabetes? Type 1 and type 2 diabetes have different causes. Yet two factors are important in both. First, you must inherit a predisposition to the disease. Second, something in your environment must trigger diabetes. Genes alone are not enough. One proof of this is identical twins. Identical twins have identical genes. Yet when one twin has type 1 diabetes, the other gets the disease at most only half the time. When one twin has type 2 diabetes, the other's risk is at most 3 in 4. Type 1 diabetes In most cases of type 1 diabetes, people need to inherit risk factors from both parents. We think these factors must be more common in whites because whites have the highest rate of type 1 diabetes. Because most people who are at risk do not get diabetes, researchers want to find out what the environmental triggers are. One trigger might be related to cold weather. Type 1 diabetes develops more often in winter than summer and is more common in places with cold climates. Another trigger might be viruses. Perhaps a virus that has only mild effects on most people triggers type 1 diabetes in others. Early diet may also play a role. Type 1 diabetes is less common in people who were breastfed and in those who first ate solid foods at later ages. In many people, the development of type 1 diabetes seems to take many years. In experiments that followed relatives of people with type 1 diabetes, researchers found that most of those who later got diabetes had certain autoantibodies in their blood for years before. (Antibodies ar Continue reading >>

Genetic Screening For The Risk Of Type 2 Diabetes

Genetic Screening For The Risk Of Type 2 Diabetes

The prevalence and incidence of type 2 diabetes, representing >90% of all cases of diabetes, are increasing rapidly throughout the world. The International Diabetes Federation has estimated that the number of people with diabetes is expected to rise from 366 million in 2011 to 552 million by 2030 if no urgent action is taken. Furthermore, as many as 183 million people are unaware that they have diabetes (www.idf.org). Therefore, the identification of individuals at high risk of developing diabetes is of great importance and interest for investigators and health care providers. Type 2 diabetes is a complex disorder resulting from an interaction between genes and environment. Several risk factors for type 2 diabetes have been identified, including age, sex, obesity and central obesity, low physical activity, smoking, diet including low amount of fiber and high amount of saturated fat, ethnicity, family history, history of gestational diabetes mellitus, history of the nondiabetic elevation of fasting or 2-h glucose, elevated blood pressure, dyslipidemia, and different drug treatments (diuretics, unselected β-blockers, etc.) (1–3). There is also ample evidence that type 2 diabetes has a strong genetic basis. The concordance of type 2 diabetes in monozygotic twins is ~70% compared with 20–30% in dizygotic twins (4). The lifetime risk of developing the disease is ~40% in offspring of one parent with type 2 diabetes, greater if the mother is affected (5), and approaching 70% if both parents have diabetes. In prospective studies, we have demonstrated that first-degree family history is associated with twofold increased risk of future type 2 diabetes (1,6). The challenge has been to find genetic markers that explain the excess risk associated with family history of diabetes Continue reading >>

Is Diabetes Genetic?

Is Diabetes Genetic?

Diabetes is a complex disease. Several factors must come together for a person to develop Type 2 Diabetes. While genetics may influence whether you’ll get this disease or not, other factors like environmental risk factors and a sedentary lifestyle also play a huge role. So, is type 2 diabetes genetic? And if not, which type of diabetes is genetic? Those are the questions we are faced with today. And unfortunately, the answer is not that simple. Yes, genetics can play a role in increasing the risk for both Diabetes Type 1 as well as Diabetes Type 2, but genes alone will not determine whether you will develop diabetes or not. Will You Get Diabetes If It Runs In Your Family? If you’ve just been diagnosed with diabetes, chances are that you’re not the first person in your family who has diabetes. The details of whether diabetes can be inherited, and how this occurs, are not clear yet. About 10% of patients diagnosed with insulin-dependent Type 1 diabetes have a first degree relative with this type of diabetes. By first degree relative, we mean father, mother, sibling, twin and child. However, when it comes to the more common type of diabetes, which is Diabetes Type 2, it has a tendency to occur in families, but this is also not very strong and not predictable. A Swedish study on Metabolic Consequences of a Family History of Non-Insulin Dependent Diabetes Mellitus concluded that abdominal obesity, insulin resistance, and decreased resting metabolic rate are characteristic features of first-degree relatives of patients with non-insulin dependent diabetes mellitus (in other words, Diabetes Type 2). And that the decrease in resting metabolic rate is partially related to the degree of abdominal obesity. Many doctors with clinical practice treating diabetes believe that thi Continue reading >>

Type 2 Diabetes Is More Common Than Type 1 Diabetes.

Type 2 Diabetes Is More Common Than Type 1 Diabetes.

Whereas type 1 diabetes is characterized by the onset in young persons (average age at diagnosis = 14), type 2 diabetes usually develops in middle age or later. This tendency to develop later in life has given rise to the term "adult onset diabetes," although the prevalence of type 2 diabetes in younger people is rising, making this term somewhat inaccurate and outdated. The typical type 2 diabetes patient is overweight ,although there are exceptions. In contrast to type 1 diabetes, symptoms often have a more gradual onset. Type 2 diabetes is associated with insulin resistance rather than the lack of insulin, as seen in type 1 diabetes. This often is obtained as a hereditary tendency from one's parents. Insulin levels in these patients are usually normal or higher than average but the body's cells are rather sluggish to respond to it. This lack of insulin activity results in higher than normal blood glucose levels. Incidence of Type 2 Diabetes Type 2 diabetes is the most common type of diabetes. This disease exists in all populations, but prevalence varies greatly, ie, 1% in Japan, and greater than 40% in the Pima Indians of Arizona. In Caucasians, the figure is somewhere between 1-2% of the entire population. The high incidence of type 2 diabetes in certain groups such as the Pima Indians appears to be a relatively recent development that followed a change in the type of food intake (from relatively little food to plenty of food). With this came the development of obesity within their culture which results in diabetes developing in those that are genetically predisposed. This "urbanization phenomenon" has been most carefully studied in non-white populations, but is probably ethnically and racially nonspecific. In other words, obesity tends to promote diabetes in those Continue reading >>

More in diabetes