diabetestalk.net

Dka Lab Values

Laboratory Values And Treatment Associated With Dka-related Cerebral Edema [pediatrics Classics Series]

Laboratory Values And Treatment Associated With Dka-related Cerebral Edema [pediatrics Classics Series]

Image: PD 1. Among children admitted to 1 of 10 medical centers for diabetic ketoacidosis management, elevated serum urea nitrogen concentrations and low partial pressures of carbon dioxide were associated with significant increases in risk of developing cerebral edema. 2. Lack of pronounced serum sodium rise and use of bicarbonate for treatment were also associated with significantly increased cerebral edema risk. Original Date of Publication: January 2001 Study Rundown: Among children presenting in diabetic ketoacidosis (DKA) either during an initial type 1 diabetes mellitus I (T1DM) presentation, following bodily stresses, or medication noncompliance, 1% will experience cerebral edema. At the time of this study, mortality occurred in 40-90% of these individuals, accounting for 50-60% of T1DM-related childhood deaths. However, before this study’s publication, there was limited information regarding cerebral edema risk factors among children with T1DM. Researchers found that elevated serum nitrogen concentrations and low partial pressures of carbon dioxide were associated with significantly increased risk of children hospitalized for DKA developing cerebral edema. In addition, lack of pronounced increases in serum sodium with treatment and use of bicarbonate were also associated with significantly increased risk of cerebral edema development. This study is limited by an inability to detect the possible influence of other confounders as well as to detect the potential role of variables that did not produce noticeable changes in clinical data. This was the first large, controlled study to investigate the role of cerebral edema-associated risk factors among children being treated for DKA. It was proposed that each of these factors likely contributed to the development o Continue reading >>

Diabetic Ketoacidosis Lab Values

Diabetic Ketoacidosis Lab Values

goha Registered Nurse DKA - fluids, fluids, bicarb, insulin drip, fluids. Get that anion gap closed, get some diabetes education, and a full set of cultures to cover the bases while you're at it. goha Registered Nurse You do see the HCO3 of 6.9, right? And yes, K+ per protocol as it shifts, but that was included in my "fix the gap" comment. jlna Paramedic I agree with the both of you. I think he may have been referring to as the potassium shifts back into the cells and the hydrogen ions shift outwards the original bicarbonate is restored. Her pH was 7.2 which the ADA does not recommend bicarbonate for. However, I don't think with this individual it would have harmed her if given in an isotonic solution since it was so low. I've seen it done both jlna Paramedic It's amazing what the insulin alone does for some people. She had a pretty long QTc initially that decreased significantly to abnormal range by the time I got her. Everything else started to stable out as well. dr-a Anesthesiology Resident I only use buffers when I need to intubate a patient that is very acidic (<7.00) and a low pco2- just to give me a buffer for a rise in pco2 moji Nursing Student jlna Paramedic I personally did not. Unfortunately, in this region, and several other regions alike, people have poorly controlled conditions on account financial inability. Having to choose between medication and food causes us to see people several times a year. Then there's always the case of psychiatric issues or inability/refusal to understand the disease process and importance of taking meds correctly. moji Nursing Student There should be some area programs to help with the med costs. I truly understand the idea of paying for meds or food. I've actually been in that position myself. Help is typically out there it' Continue reading >>

Diabetic Ketoacidosis

Diabetic Ketoacidosis

Initial Evaluation Initial evaluation of patients with DKA includes diagnosis and treatment of precipitating factors (Table 14–18). The most common precipitating factor is infection, followed by noncompliance with insulin therapy.3 While insulin pump therapy has been implicated as a risk factor for DKA in the past, most recent studies show that with proper education and practice using the pump, the frequency of DKA is the same for patients on pump and injection therapy.19 Common causes by frequency Other causes Selected drugs that may contribute to diabetic ketoacidosis Infection, particularly pneumonia, urinary tract infection, and sepsis4 Inadequate insulin treatment or noncompliance4 New-onset diabetes4 Cardiovascular disease, particularly myocardial infarction5 Acanthosis nigricans6 Acromegaly7 Arterial thrombosis, including mesenteric and iliac5 Cerebrovascular accident5 Hemochromatosis8 Hyperthyroidism9 Pancreatitis10 Pregnancy11 Atypical antipsychotic agents12 Corticosteroids13 FK50614 Glucagon15 Interferon16 Sympathomimetic agents including albuterol (Ventolin), dopamine (Intropin), dobutamine (Dobutrex), terbutaline (Bricanyl),17 and ritodrine (Yutopar)18 DIFFERENTIAL DIAGNOSIS Three key features of diabetic acidosis are hyperglycemia, ketosis, and acidosis. The conditions that cause these metabolic abnormalities overlap. The primary differential diagnosis for hyperglycemia is hyperosmolar hyperglycemic state (Table 23,20), which is discussed in the Stoner article21 on page 1723 of this issue. Common problems that produce ketosis include alcoholism and starvation. Metabolic states in which acidosis is predominant include lactic acidosis and ingestion of drugs such as salicylates and methanol. Abdominal pain may be a symptom of ketoacidosis or part of the inci Continue reading >>

Diabetic Ketoacidosis: Evaluation And Treatment

Diabetic Ketoacidosis: Evaluation And Treatment

Diabetic ketoacidosis is characterized by a serum glucose level greater than 250 mg per dL, a pH less than 7.3, a serum bicarbonate level less than 18 mEq per L, an elevated serum ketone level, and dehydration. Insulin deficiency is the main precipitating factor. Diabetic ketoacidosis can occur in persons of all ages, with 14 percent of cases occurring in persons older than 70 years, 23 percent in persons 51 to 70 years of age, 27 percent in persons 30 to 50 years of age, and 36 percent in persons younger than 30 years. The case fatality rate is 1 to 5 percent. About one-third of all cases are in persons without a history of diabetes mellitus. Common symptoms include polyuria with polydipsia (98 percent), weight loss (81 percent), fatigue (62 percent), dyspnea (57 percent), vomiting (46 percent), preceding febrile illness (40 percent), abdominal pain (32 percent), and polyphagia (23 percent). Measurement of A1C, blood urea nitrogen, creatinine, serum glucose, electrolytes, pH, and serum ketones; complete blood count; urinalysis; electrocardiography; and calculation of anion gap and osmolar gap can differentiate diabetic ketoacidosis from hyperosmolar hyperglycemic state, gastroenteritis, starvation ketosis, and other metabolic syndromes, and can assist in diagnosing comorbid conditions. Appropriate treatment includes administering intravenous fluids and insulin, and monitoring glucose and electrolyte levels. Cerebral edema is a rare but severe complication that occurs predominantly in children. Physicians should recognize the signs of diabetic ketoacidosis for prompt diagnosis, and identify early symptoms to prevent it. Patient education should include information on how to adjust insulin during times of illness and how to monitor glucose and ketone levels, as well as i Continue reading >>

Diabetic Ketoacidosis (dka)

Diabetic Ketoacidosis (dka)

Snap Shot A 12 year old boy, previously healthy, is admitted to the hospital after 2 days of polyuria, polyphagia, nausea, vomiting and abdominal pain. Vital signs are: Temp 37C, BP 103/63 mmHg, HR 112, RR 30. Physical exam shows a lethargic boy. Labs are notable for WBC 16,000, Glucose 534, K 5.9, pH 7.13, PCO2 is 20 mmHg, PO2 is 90 mmHg. Introduction Complication of type I diabetes result of ↓ insulin, ↑ glucagon, growth hormone, catecholamine Precipitated by infections drugs (steroids, thiazide diuretics) noncompliance pancreatitis undiagnosed DM Presentation Symptoms abdominal pain vomiting Physical exam Kussmaul respiration increased tidal volume and rate as a result of metabolic acidosis fruity, acetone odor severe hypovolemia coma Evaluation Serology blood glucose levels > 250 mg/dL due to ↑ gluconeogenesis and glycogenolysis arterial pH < 7.3 ↑ anion gap due to ketoacidosis, lactic acidosis ↓ HCO3- consumed in an attempt to buffer the increased acid hyponatremia dilutional hyponatremia glucose acts as an osmotic agent and draws water from ICF to ECF hyperkalemia acidosis results in ICF/ECF exchange of H+ for K+ moderate ketonuria and ketonemia due to ↑ lipolysis β-hydroxybutyrate > acetoacetate β-hydroxybutyrate not detected with normal ketone body tests hypertriglyceridemia due to ↓ in capillary lipoprotein lipase activity activated by insulin leukocytosis due to stress-induced cortisol release H2PO4- is increased in urine, as it is titratable acid used to buffer the excess H+ that is being excreted Treatment Fluids Insulin with glucose must prevent resultant hypokalemia and hypophosphatemia labs may show pseudo-hyperkalemia prior to administartion of fluid and insulin due to transcellular shift of potassium out of the cells to balance the H+ be Continue reading >>

Diagnosis

Diagnosis

Print If your doctor suspects diabetic ketoacidosis, he or she will do a physical exam and various blood tests. In some cases, additional tests may be needed to help determine what triggered the diabetic ketoacidosis. Blood tests Blood tests used in the diagnosis of diabetic ketoacidosis will measure: Blood sugar level. If there isn't enough insulin in your body to allow sugar to enter your cells, your blood sugar level will rise (hyperglycemia). As your body breaks down fat and protein for energy, your blood sugar level will continue to rise. Ketone level. When your body breaks down fat and protein for energy, acids known as ketones enter your bloodstream. Blood acidity. If you have excess ketones in your blood, your blood will become acidic (acidosis). This can alter the normal function of organs throughout your body. Additional tests Your doctor may order tests to identify underlying health problems that might have contributed to diabetic ketoacidosis and to check for complications. Tests might include: Blood electrolyte tests Urinalysis Chest X-ray A recording of the electrical activity of the heart (electrocardiogram) Treatment If you're diagnosed with diabetic ketoacidosis, you might be treated in the emergency room or admitted to the hospital. Treatment usually involves: Fluid replacement. You'll receive fluids — either by mouth or through a vein (intravenously) — until you're rehydrated. The fluids will replace those you've lost through excessive urination, as well as help dilute the excess sugar in your blood. Electrolyte replacement. Electrolytes are minerals in your blood that carry an electric charge, such as sodium, potassium and chloride. The absence of insulin can lower the level of several electrolytes in your blood. You'll receive electrolytes throu Continue reading >>

Diagnosis And Treatment Of Diabetic Ketoacidosis And The Hyperglycemic Hyperosmolar State

Diagnosis And Treatment Of Diabetic Ketoacidosis And The Hyperglycemic Hyperosmolar State

Go to: Pathogenesis In both DKA and HHS, the underlying metabolic abnormality results from the combination of absolute or relative insulin deficiency and increased amounts of counterregulatory hormones. Glucose and lipid metabolism When insulin is deficient, the elevated levels of glucagon, catecholamines and cortisol will stimulate hepatic glucose production through increased glycogenolysis and enhanced gluconeogenesis4 (Fig. 1). Hypercortisolemia will result in increased proteolysis, thus providing amino acid precursors for gluconeogenesis. Low insulin and high catecholamine concentrations will reduce glucose uptake by peripheral tissues. The combination of elevated hepatic glucose production and decreased peripheral glucose use is the main pathogenic disturbance responsible for hyperglycemia in DKA and HHS. The hyperglycemia will lead to glycosuria, osmotic diuresis and dehydration. This will be associated with decreased kidney perfusion, particularly in HHS, that will result in decreased glucose clearance by the kidney and thus further exacerbation of the hyperglycemia. In DKA, the low insulin levels combined with increased levels of catecholamines, cortisol and growth hormone will activate hormone-sensitive lipase, which will cause the breakdown of triglycerides and release of free fatty acids. The free fatty acids are taken up by the liver and converted to ketone bodies that are released into the circulation. The process of ketogenesis is stimulated by the increase in glucagon levels.5 This hormone will activate carnitine palmitoyltransferase I, an enzyme that allows free fatty acids in the form of coenzyme A to cross mitochondrial membranes after their esterification into carnitine. On the other side, esterification is reversed by carnitine palmitoyltransferase I Continue reading >>

Diabetic Ketoacidosis Workup

Diabetic Ketoacidosis Workup

Approach Considerations Diabetic ketoacidosis is typically characterized by hyperglycemia over 250 mg/dL, a bicarbonate level less than 18 mEq/L, and a pH less than 7.30, with ketonemia and ketonuria. While definitions vary, mild DKA can be categorized by a pH level of 7.25-7.3 and a serum bicarbonate level between 15-18 mEq/L; moderate DKA can be categorized by a pH between 7.0-7.24 and a serum bicarbonate level of 10 to less than 15 mEq/L; and severe DKA has a pH less than 7.0 and bicarbonate less than 10 mEq/L. [17] In mild DKA, anion gap is greater than 10 and in moderate or severe DKA the anion gap is greater than 12. These figures differentiate DKA from HHS where blood glucose is greater than 600 mg/dL but pH is greater than 7.3 and serum bicarbonate greater than 15 mEq/L. Laboratory studies for diabetic ketoacidosis (DKA) should be scheduled as follows: Repeat laboratory tests are critical, including potassium, glucose, electrolytes, and, if necessary, phosphorus. Initial workup should include aggressive volume, glucose, and electrolyte management. It is important to be aware that high serum glucose levels may lead to dilutional hyponatremia; high triglyceride levels may lead to factitious low glucose levels; and high levels of ketone bodies may lead to factitious elevation of creatinine levels. Continue reading >>

Hyperglycemic Crises In Diabetes

Hyperglycemic Crises In Diabetes

Ketoacidosis and hyperosmolar hyperglycemia are the two most serious acute metabolic complications of diabetes, even if managed properly. These disorders can occur in both type 1 and type 2 diabetes. The mortality rate in patients with diabetic ketoacidosis (DKA) is <5% in experienced centers, whereas the mortality rate of patients with hyperosmolar hyperglycemic state (HHS) still remains high at ∼15%. The prognosis of both conditions is substantially worsened at the extremes of age and in the presence of coma and hypotension (1–10). This position statement will outline precipitating factors and recommendations for the diagnosis, treatment, and prevention of DKA and HHS. It is based on a previous technical review (11), which should be consulted for further information. PATHOGENESIS Although the pathogenesis of DKA is better understood than that of HHS, the basic underlying mechanism for both disorders is a reduction in the net effective action of circulating insulin coupled with a concomitant elevation of counterregulatory hormones, such as glucagon, catecholamines, cortisol, and growth hormone. These hormonal alterations in DKA and HHS lead to increased hepatic and renal glucose production and impaired glucose utilization in peripheral tissues, which result in hyperglycemia and parallel changes in osmolality of the extracellular space (12,13). The combination of insulin deficiency and increased counterregulatory hormones in DKA also leads to the release of free fatty acids into the circulation from adipose tissue (lipolysis) and to unrestrained hepatic fatty acid oxidation to ketone bodies (β-hydroxybutyrate [β-OHB] and acetoacetate), with resulting ketonemia and metabolic acidosis. On the other hand, HHS may be caused by plasma insulin concentrations that are in Continue reading >>

Understanding Diabetic Ketoacidosis Lab Values

Understanding Diabetic Ketoacidosis Lab Values

Diabetes can be a difficult condition to monitor. You need to consistently eat right and be aware of even slight changes concerning how you’re feeling physically… especially when there are really scary things that can happen, like diabetic ketoacidosis (DKA). When your cells don’t get the sugar they need to make into energy, your body then starts to burn fat for energy, which produces ketones. This happens when your body doesn’t have enough of the hormone insulin to turn the glucose (sugar) into energy. Excess ketones can be extremely dangerous when they build up in the blood because they can make the blood too acidic. Acidic blood is toxic to your cells and can impair them so they can’t function properly. This causes them to have a hard time fighting bacterias and viruses and they also won’t be able to process the oxygen and nutrients in your blood properly, depleting you of energy. If you’re not careful, this condition could be fatal. Warning Signs of DKA DKA usually occurs over several hours and there are variety of warning signs that you should be aware of to prevent this condition from becoming dangerous. Here are a few symptoms to watch for: Extreme dry mouth or thirst Dry or flushed skin Always feeling tired Difficulty breathing Your breath smells sweet or fruity Confusion or having a hard time paying attention How to Test for DKA If you have diabetes, you should consider buying at home ketone tests to ensure that your blood levels are in the appropriate range at all times. For example, Amazon.com has a variety of easy-to-use tests that are extremely inexpensive. If you are feeling any of the above symptoms, you can simply use a urine sample to know if you are within healthy ketone limits. The test pad will change colors and you can match your test Continue reading >>

15l. Loriaux (ed.), Endocrine Emergencies: Recognition And Treatment, Contemporary Endocrinology 74, Doi 10.1007/978-1-62703-697-9_2, © Springer Science+business Media New York 2014

15l. Loriaux (ed.), Endocrine Emergencies: Recognition And Treatment, Contemporary Endocrinology 74, Doi 10.1007/978-1-62703-697-9_2, © Springer Science+business Media New York 2014

Précis 1. Clinical setting—Any altered state of well being in the context of signifi cant hyperglycemia in a patient with type 1 (DKA) or advanced type 2 diabetes mel- litus (DKA or HHS), particularly during acute illness, may signify one of these diabetic emergencies. 2. Diagnosis (a) History: Most patients with diabetic ketoacidosis (DKA) or with hyperos- molar hyperglycemic state (HHS) will have a history of diabetes, and a his- tory of altered insulin dose, infection, signifi cant medical “stressâ€. Antecedent symptoms of polyuria and polydipsia, lassitude, blurred vision, and mental status changes may predominate the clinical picture. With DKA, abdominal pain and tachypnea are often present. (b) Physical examination usually reveals an altered sensorium, signs of volume contraction/dehydration (tachycardia, hypotension, dry mucus membranes, “tenting†of the skin); in DKA, the odor of acetone in the breath. (c) Laboratory evaluation. The diagnostic criteria for DKA include blood glu- cose above 250 mg/dL, arterial pH < 7.30, serum bicarbonate < 15 mEq/l Chapter 2 Diabetic Ketoacidosis and Hyperosmolar Hyperglycemic Syndrome Beatrice C. Lupsa and Silvio E. Inzucchi B. C. Lupsa , M.D. (*) • S. E. Inzucchi , M.D. Section of Endocrinology , Yale University School of Medicine , Yale-New Haven Hospital, 333 Cedar Street, FMP 107 , P.O. Box 208020 , New Haven , CT 06520 , USA e-mail: [email protected] 16 and moderate degree of ketonemia and/or ketonuria. Patients with HHS present with extreme hyperglycemia (blood glucose > 600 mg/dL), increased osmolality (> 320 mOsm/kg) and profound dehydration/volume contrac- tion. The laboratory evaluation of a patient with hyperglycemic emergency should include measurement of blood glucose and he Continue reading >>

Common Laboratory (lab) Values - Abgs

Common Laboratory (lab) Values - Abgs

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Laboratory VALUES Home Page Arterial Blood Gases Arterial blood gas analysis provides information on the following: 1] Oxygenation of blood through gas exchange in the lungs. 2] Carbon dioxide (CO2) elimination through respiration. 3] Acid-base balance or imbalance in extra-cellular fluid (ECF). Normal Blood Gases Arterial Venous pH 7.35 - 7.45 7.32 - 7.42 Not a gas, but a measurement of acidity or alkalinity, based on the hydrogen (H+) ions present. The pH of a solution is equal to the negative log of the hydrogen ion concentration in that solution: pH = - log [H+]. PaO2 80 to 100 mm Hg. 28 - 48 mm Hg The partial pressure of oxygen that is dissolved in arterial blood. New Born – Acceptable range 40-70 mm Hg. Elderly: Subtract 1 mm Hg from the minimal 80 mm Hg level for every year over 60 years of age: 80 - (age- 60) (Note: up to age 90) HCO3 22 to 26 mEq/liter (21–28 mEq/L) 19 to 25 mEq/liter The calculated value of the amount of bicarbonate in the bloodstream. Not a blood gas but the anion of carbonic acid. PaCO2 35-45 mm Hg 38-52 mm Hg The amount of carbon dioxide dissolved in arterial blood. Measured. Partial pressure of arterial CO2. (Note: Large A= alveolor CO2). CO2 is called a “volatile acid” because it can combine reversibly with H2O to yield a strongly acidic H+ ion and a weak basic bicarbonate ion (HCO3 -) according to the following equation: CO2 + H2O <--- --> H+ + HCO3 B.E. –2 to +2 mEq/liter Other sources: normal reference range is between -5 to +3. The base excess indicates the amount of excess or insufficient level of bicarbonate in the system. (A negative base excess indicates a base deficit in the blood.) A negative base excess is equivalent to an acid excess. A value outside of the normal r Continue reading >>

Diabetic Ketoacidosis (dka)

Diabetic Ketoacidosis (dka)

Diabetic ketoacidosis is an acute metabolic complication of diabetes characterized by hyperglycemia, hyperketonemia, and metabolic acidosis. Hyperglycemia causes an osmotic diuresis with significant fluid and electrolyte loss. DKA occurs mostly in type 1 diabetes mellitus (DM). It causes nausea, vomiting, and abdominal pain and can progress to cerebral edema, coma, and death. DKA is diagnosed by detection of hyperketonemia and anion gap metabolic acidosis in the presence of hyperglycemia. Treatment involves volume expansion, insulin replacement, and prevention of hypokalemia. Diabetic ketoacidosis (DKA) is most common among patients with type 1 diabetes mellitus and develops when insulin levels are insufficient to meet the body’s basic metabolic requirements. DKA is the first manifestation of type 1 DM in a minority of patients. Insulin deficiency can be absolute (eg, during lapses in the administration of exogenous insulin) or relative (eg, when usual insulin doses do not meet metabolic needs during physiologic stress). Common physiologic stresses that can trigger DKA include Some drugs implicated in causing DKA include DKA is less common in type 2 diabetes mellitus, but it may occur in situations of unusual physiologic stress. Ketosis-prone type 2 diabetes is a variant of type 2 diabetes, which is sometimes seen in obese individuals, often of African (including African-American or Afro-Caribbean) origin. People with ketosis-prone diabetes (also referred to as Flatbush diabetes) can have significant impairment of beta cell function with hyperglycemia, and are therefore more likely to develop DKA in the setting of significant hyperglycemia. SGLT-2 inhibitors have been implicated in causing DKA in both type 1 and type 2 DM. Continue reading >>

Blood Gas Measurements In Dka: Are We Searching For A Unicorn?

Blood Gas Measurements In Dka: Are We Searching For A Unicorn?

Introduction Recently there have been numerous publications and discussions about whether VBGs can replace ABGs in DKA. The growing consensus is that VBGs are indeed adequate. Eliminating painful, time-consuming arterial blood draws is a huge step in the right direction. However, the ABG vs. VBG debate overlooks a larger point: neither ABG nor VBG measurements are usually helpful. It is widely recommended to routinely obtain an ABG or VBG, for example by both American and British guidelines. Why? Is it helping our patients, or is it something that we do out of a sense of habit or obligation? Diagnosis of DKA: Blood gas doesn’t help These are the diagnostic criteria for DKA from the America Diabetes Association. They utilize either pH or bicarbonate in a redundant fashion to quantify the severity of acidosis. It is unclear what independent information the pH adds beyond what is provided by the bicarbonate. Practically speaking, the blood gas doesn’t help diagnose DKA. This diagnosis should be based on analysis of the metabolic derangements in the acid-base status (e.g. anion gap, beta-hydroxybutyrate level). The addition of a blood gas to serum chemistries only adds information about the respiratory status, which does not help determine if the patient has ketoacidosis. Management: Does the pH help? It is debatable whether knowing or attempting to directly “treat” the pH is helpful. The pH will often be very low, usually lower than would be expected by looking at the patient. This may induce panic. However, it is actually a useful reminder that acidemia itself doesn't necessarily cause instability (e.g. healthy young rowers may experience lactic acidosis with a pH <7 during athletic exertion; Volianitis 2001). A question often arises regarding whether bicarbonate Continue reading >>

Understanding And Treating Diabetic Ketoacidosis

Understanding And Treating Diabetic Ketoacidosis

Diabetic ketoacidosis (DKA) is a serious metabolic disorder that can occur in animals with diabetes mellitus (DM).1,2 Veterinary technicians play an integral role in managing and treating patients with this life-threatening condition. In addition to recognizing the clinical signs of this disorder and evaluating the patient's response to therapy, technicians should understand how this disorder occurs. DM is caused by a relative or absolute lack of insulin production by the pancreatic b-cells or by inactivity or loss of insulin receptors, which are usually found on membranes of skeletal muscle, fat, and liver cells.1,3 In dogs and cats, DM is classified as either insulin-dependent (the body is unable to produce sufficient insulin) or non-insulin-dependent (the body produces insulin, but the tissues in the body are resistant to the insulin).4 Most dogs and cats that develop DKA have an insulin deficiency. Insulin has many functions, including the enhancement of glucose uptake by the cells for energy.1 Without insulin, the cells cannot access glucose, thereby causing them to undergo starvation.2 The unused glucose remains in the circulation, resulting in hyperglycemia. To provide cells with an alternative energy source, the body breaks down adipocytes, releasing free fatty acids (FFAs) into the bloodstream. The liver subsequently converts FFAs to triglycerides and ketone bodies. These ketone bodies (i.e., acetone, acetoacetic acid, b-hydroxybutyric acid) can be used as energy by the tissues when there is a lack of glucose or nutritional intake.1,2 The breakdown of fat, combined with the body's inability to use glucose, causes many pets with diabetes to present with weight loss, despite having a ravenous appetite. If diabetes is undiagnosed or uncontrolled, a series of metab Continue reading >>

More in diabetes