diabetestalk.net

What Regulates Blood Sugar Levels?

Blood Sugar Regulation

Blood Sugar Regulation

Ball-and-stick model of a glucose molecule Blood sugar regulation is the process by which the levels of blood sugar, primarily glucose, are maintained by the body within a narrow range. This tight regulation is referred to as glucose homeostasis. Insulin, which lowers blood sugar, and glucagon, which raises it, are the most well known of the hormones involved, but more recent discoveries of other glucoregulatory hormones have expanded the understanding of this process.[1] Mechanisms[edit] Blood sugar regulation the flatline is the level needed the sine wave the fluctuations. Blood sugar levels are regulated by negative feedback in order to keep the body in balance. The levels of glucose in the blood are monitored by many tissues, but the cells in the pancreatic islets are among the most well understood and important. Glucagon[edit] If the blood glucose level falls to dangerous levels (as during very heavy exercise or lack of food for extended periods), the alpha cells of the pancreas release glucagon, a hormone whose effects on liver cells act to increase blood glucose levels. They convert glycogen into glucose (this process is called glycogenolysis). The glucose is released into the bloodstream, increasing blood sugar. Hypoglycemia, the state of having low blood sugar, is treated by restoring the blood glucose level to normal by the ingestion or administration of dextrose or carbohydrate foods. It is often self-diagnosed and self-medicated orally by the ingestion of balanced meals. In more severe circumstances, it is treated by injection or infusion of glucagon. Insulin[edit] When levels of blood sugar rise, whether as a result of glycogen conversion, or from digestion of a meal, a different hormone is released from beta cells found in the Islets of Langerhans in the p Continue reading >>

How Does The Human Body Regulate Its Blood Glucose Levels?

How Does The Human Body Regulate Its Blood Glucose Levels?

Once a person has eaten a meal, their digestive system will break the nutrients down into smaller components that can travel in the blood to any parts of the body that need them. Any carbohydrates in this food will be broken down into sugars (e.g. glucose). These sugars will rapidly enter the blood. At this point, it is critical for the body to use the glucose ASAP to avoid hyperglycaemia (high blood glucose) and maintain a constant blood glucose level. The glucose in the blood is therefore stored in liver and muscle cells in the form of a larger molecule called glycogen. The body is able to detect blood glucose levels via an organ called the pancreas. More specifically, it is detected by areas within the pancreas called islets of Langerhans. In this region there are 2 types of cells. Beta-cells and alpha-cells. Beta-cells will detect high blood glucose (e.g. after a meal) and secrete insulin. Insulin is a hormone that will help the liver and muscle cell uptake more glucose and convert it to glycogen, thus lowering the overall blood glucose levels. Alpha-cells will detect low blood glucose (e.g. after exercise) and secrete glucagon. Glucagon is also a hormone, but it has the role of breaking down glycogen and releasing glucose from the liver and muscle cells. This will increase the blood glucose. To provide an overview, the components within this system communicate with each other via hormones in order to provide a relatively constant blood glucose level. This maintanence of the internal environment is an example of homeostasis. Continue reading >>

Blood Glucose Regulation

Blood Glucose Regulation

Blood glucose regulation involves maintaining blood glucose levels at constant levels in the face of dynamic glucose intake and energy use by the body. Glucose, shown in figure 1 is key in the energy intake of humans. On average this target range is 60-100 mg/dL for an adult although people can be asymptomatic at much more varied levels. In order to maintain this range there are two main hormones that control blood glucose levels: insulin and glucagon. Insulin is released when there are high amounts of glucose in the blood stream. Glucagon is released when there are low levels of glucose in the blood stream. There are other hormones that effect glucose regulation and are mainly controlled by the sympathetic nervous system. Blood glucose regulation is very important to the maintenance of the human body. The brain doesn’t have any energy storage of its own and as a result needs a constant flow of glucose, using about 120 grams of glucose daily or about 60% of total glucose used by the body at resting state. [1] With out proper blood glucose regulation the brain and other organs could starve leading to death. Insulin A key regulatory pathway to control blood glucose levels is the hormone insulin. Insulin is released from the beta cells in the islets of Langerhans found in the pancreas. Insulin is released when there is a high concentration of glucose in the blood stream. The beta cells know to release insulin through the fallowing pathway depicted in figure 2. [2,3]Glucose enters the cell and ATP is produce in the mitochondria through the Krebs cycle and electron transport chain. This increase in ATP causes channels to closes. These channels allow potassium cations to flow into the cell. [2,3,]With these channels closed the inside of the cell becomes more negative causin Continue reading >>

How Insulin And Glucagon Work To Regulate Blood Sugar Levels

How Insulin And Glucagon Work To Regulate Blood Sugar Levels

How insulin and glucagon work to regulate blood sugar levels Author: Zawn Villines/Source: Medical News Today Together, insulin and glucagon help keep conditions inside the body steady. When blood sugar is too high, the pancreas secretes more insulin. When blood sugar levels drop, the pancreas releases glucagon to bring them back up. The body converts carbohydrates from food into sugar (glucose), which serves as a vital source of energy. Blood sugar levels vary throughout the day but, in most instances, insulin and glucagon keep these levels normal. Health factors including insulin resistance, diabetes , and problems with diet can cause a persons blood sugar levels to soar or plummet. Blood sugar levels are measured in milligrams per decilitre (mg/dl). Ideal blood sugar ranges are as follows: Before breakfast levels should be less than 100 mg/dl for a person without diabetes and 70-130 mg/dl for a person with diabetes. Two hours after meals levels should be less than 140 mg/dl for a person without diabetes and less than 180 mg/dl for a person with diabetes. The pancreas releases insulin and glucagon (shown here in purple and green) to control blood sugar levels. Blood sugar levels are a measure of how effectively an individuals body uses glucose. When the body does not convert enough glucose for use, blood sugar levels remain high. Insulin helps the bodys cells absorb glucose, lowering blood sugar and providing the cells with the glucose they need for energy. When blood sugar levels are too low, the pancreas releases glucagon. Glucagon forces the liver to release stored glucose, which causes the blood sugar to rise. Insulin and glucagon are both released by islet cells in the pancreas. These cells are clustered throughout the pancreas. Beta islet cells (B cells) releas Continue reading >>

Blood Sugar & Other Hormones

Blood Sugar & Other Hormones

Other hormones also affect blood sugar. Glucagon, amylin, GIP, GLP-1, epinephrine, cortisol, and growth hormone also affect blood sugar levels. Glucagon: Made by islet cells (alpha cells) in the pancreas, controls the production of glucose and another fuel, ketones, in the liver. Glucagon is released overnight and between meals and is important in maintaining the body’s sugar and fuel balance. It signals the liver to break down its starch or glycogen stores and helps to form new glucose units and ketone units from other substances. It also promotes the breakdown of fat in fat cells. In contrast, after a meal, when sugar from the ingested food rushes into your bloodstream, your liver doesn’t need to make sugar. The consequence? Glucagon levels fall. Unfortunately, in individuals with diabetes, the opposite occurs. While eating, their glucagon levels rise, which causes blood sugar levels to rise after the meal. WITH DIABETES, GLUCAGON LEVELS ARE TOO HIGH AT MEALTIMES GLP-1 (glucagon-like peptide-1), GIP (glucose-dependent insulinotropic polypeptide) and amylin: GLP-1 (glucagon-like peptide-1), GIP (glucose-dependent insulinotropic polypeptide) and amylin are other hormones that also regulate mealtime insulin. GLP-1 and GIP are incretin hormones. When released from your gut, they signal the beta cells to increase their insulin secretion and, at the same time, decrease the alpha cells’ release of glucagon. GLP-1 also slows down the rate at which food empties from your stomach, and it acts on the brain to make you feel full and satisfied. People with type 1 diabetes have absent or malfunctioning beta cells so the hormones insulin and amylin are missing and the hormone GLP1 cannot work properly. This may explain, in part, why individuals with diabetes do not suppress gl Continue reading >>

How To Stabilize Your Blood Sugar

How To Stabilize Your Blood Sugar

Life with type 2 diabetes can sometimes seem like an hourly or even minute-by-minute effort to stabilize your blood sugar. All of the recommendations and drugs you’ve been given as part of your type 2 diabetes treatment plan are intended to help you reach — and keep — healthy blood sugar levels most of the time. But doctors are learning that to control type 2 diabetes well, better information about why blood sugar matters and how to manage it is essential. The Facts About Diabetes and Blood Sugar As the American Diabetes Association (ADA) explains, your body needs sugar (glucose) for fuel, and there’s a fairly complicated process that makes it possible for your body to use that sugar. Insulin, which is made by the pancreas, is the hormone that enables the cells in your body to take advantage of sugar. Type 2 diabetes occurs when your body isn’t able to remove sugar from your blood. This can happen if your body stops being sensitive to insulin or if it starts to respond in a delayed or exaggerated way to changes in your blood sugar. Diabetes is signaled by an elevated blood sugar level of more than 126 milligrams per deciliter (mg/dL) for a fasting blood test, or more than 200 mg/dL at any time during the day. It can also be indicated by a hemoglobin A1C level of 6.5 percent or higher, a measure of the percentage of blood sugar attached to hemoglobin in the blood during the past two to three months. (Hemoglobin is a protein in red blood cells that transports oxygen throughout the body. So an A1C of 6.5 means that 6.5 percent of your red blood cells have sugar attached to them.) Unchecked high blood sugar gradually damages the blood vessels in your body. Over the long term, this slow, progressive harm can lead to a dangerous loss of sensation in your legs and fe Continue reading >>

The Liver & Blood Sugar

The Liver & Blood Sugar

During a meal, your liver stores sugar for later. When you’re not eating, the liver supplies sugar by turning glycogen into glucose in a process called glycogenolysis. The liver both stores and produces sugar… The liver acts as the body’s glucose (or fuel) reservoir, and helps to keep your circulating blood sugar levels and other body fuels steady and constant. The liver both stores and manufactures glucose depending upon the body’s need. The need to store or release glucose is primarily signaled by the hormones insulin and glucagon. During a meal, your liver will store sugar, or glucose, as glycogen for a later time when your body needs it. The high levels of insulin and suppressed levels of glucagon during a meal promote the storage of glucose as glycogen. The liver makes sugar when you need it…. When you’re not eating – especially overnight or between meals, the body has to make its own sugar. The liver supplies sugar or glucose by turning glycogen into glucose in a process called glycogenolysis. The liver also can manufacture necessary sugar or glucose by harvesting amino acids, waste products and fat byproducts. This process is called gluconeogenesis. When your body’s glycogen storage is running low, the body starts to conserve the sugar supplies for the organs that always require sugar. These include: the brain, red blood cells and parts of the kidney. To supplement the limited sugar supply, the liver makes alternative fuels called ketones from fats. This process is called ketogenesis. The hormone signal for ketogenesis to begin is a low level of insulin. Ketones are burned as fuel by muscle and other body organs. And the sugar is saved for the organs that need it. The terms “gluconeogenesis, glycogenolysis and ketogenesis” may seem like compli Continue reading >>

Blood Sugar Regulation

Blood Sugar Regulation

Most cells in the human body use the sugar called glucose as their major source of energy. Glucose molecules are broken down within cells in order to produce adenosine triphosphate (ATP) molecules, energy-rich molecules that power numerous cellular processes. Glucose molecules are delivered to cells by the circulating blood and therefore, to ensure a constant supply of glucose to cells, it is essential that blood glucose levels be maintained at relatively constant levels. Level constancy is accomplished primarily through negative feedback systems, which ensure that blood glucose concentration is maintained within the normal range of 70 to 110 milligrams (0.0024 to 0.0038 ounces) of glucose per deciliter (approximately one-fifth of a pint) of blood. Negative feedback systems are processes that sense changes in the body and activate mechanisms that reverse the changes in order to restore conditions to their normal levels. Negative feedback systems are critically important in homeostasis, the maintenance of relatively constant internal conditions. Disruptions in homeostasis lead to potentially life-threatening situations. The maintenance of relatively constant blood glucose levels is essential for the health of cells and thus the health of the entire body. Major factors that can increase blood glucose levels include glucose absorption by the small intestine (after ingesting a meal) and the production of new glucose molecules by liver cells. Major factors that can decrease blood glucose levels include the transport of glucose into cells (for use as a source of energy or to be stored for future use) and the loss of glucose in urine (an abnormal event that occurs in diabetes mellitus). Insulin and Glucagon In a healthy person, blood glucose levels are restored to normal level Continue reading >>

15 Easy Ways To Lower Blood Sugar Levels Naturally

15 Easy Ways To Lower Blood Sugar Levels Naturally

High blood sugar occurs when your body can't effectively transport sugar from blood into cells. When left unchecked, this can lead to diabetes. One study from 2012 reported that 12–14% of US adults had type 2 diabetes, while 37–38% were classified as pre-diabetic (1). This means that 50% of all US adults have diabetes or pre-diabetes. Here are 15 easy ways to lower blood sugar levels naturally: Regular exercise can help you lose weight and increase insulin sensitivity. Increased insulin sensitivity means your cells are better able to use the available sugar in your bloodstream. Exercise also helps your muscles use blood sugar for energy and muscle contraction. If you have problems with blood sugar control, you should routinely check your levels. This will help you learn how you respond to different activities and keep your blood sugar levels from getting either too high or too low (2). Good forms of exercise include weight lifting, brisk walking, running, biking, dancing, hiking, swimming and more. Exercise increases insulin sensitivity and helps your muscles pick up sugars from the blood. This can lead to reduced blood sugar levels. Your body breaks carbs down into sugars (mostly glucose), and then insulin moves the sugars into cells. When you eat too many carbs or have problems with insulin function, this process fails and blood glucose levels rise. However, there are several things you can do about this. The American Diabetes Association (ADA) recommends controlling carb intake by counting carbs or using a food exchange system (3). Some studies find that these methods can also help you plan your meals appropriately, which may further improve blood sugar control (4, 5). Many studies also show that a low-carb diet helps reduce blood sugar levels and prevent blood s Continue reading >>

Blood Glucose Regulation

Blood Glucose Regulation

Glucose is needed by cells for respiration. It is important that the concentration of glucose in the blood is maintained at a constant level. Insulin is a hormone produced by the pancreas that regulates glucose levels in the blood. How glucose is regulated Glucose level Effect on pancreas Effect on liver Effect on glucose level too high insulin secreted into the blood liver converts glucose into glycogen goes down too low insulin not secreted into the blood liver does not convert glucose into glycogen goes up Use the animation to make sure you understand how this works. You have an old or no version of flash - you need to upgrade to view this funky content! Go to the WebWise Flash install guide Glucagon – Higher tier The pancreas releases another hormone, glucagon, when the blood sugar levels fall. This causes the cells in the liver to turn glycogen back into glucose which can then be released into the blood. The blood sugar levels will then rise. Now try a Test Bite- Higher tier. Diabetes is a disorder in which the blood glucose levels remain too high. It can be treated by injecting insulin. The extra insulin allows the glucose to be taken up by the liver and other tissues, so cells get the glucose they need and blood-sugar levels stay normal. There are two types of diabetes. Type 1 diabetes Type 1 diabetes is caused by a lack of insulin. It can be controlled by: monitoring the diet injecting insulin People with type 1 diabetes have to monitor their blood sugar levels throughout the day as the level of physical activity and diet affect the amount of insulin required. Type 2 diabetes Type 2 diabetes is caused by a person becoming resistant to insulin. It can be controlled by diet and exercise. There is a link between rising levels of obesity (chronic overweight) and i Continue reading >>

Normal Regulation Of Blood Glucose

Normal Regulation Of Blood Glucose

The human body wants blood glucose (blood sugar) maintained in a very narrow range. Insulin and glucagon are the hormones which make this happen. Both insulin and glucagon are secreted from the pancreas, and thus are referred to as pancreatic endocrine hormones. The picture on the left shows the intimate relationship both insulin and glucagon have to each other. Note that the pancreas serves as the central player in this scheme. It is the production of insulin and glucagon by the pancreas which ultimately determines if a patient has diabetes, hypoglycemia, or some other sugar problem. In this Article Insulin Basics: How Insulin Helps Control Blood Glucose Levels Insulin and glucagon are hormones secreted by islet cells within the pancreas. They are both secreted in response to blood sugar levels, but in opposite fashion! Insulin is normally secreted by the beta cells (a type of islet cell) of the pancreas. The stimulus for insulin secretion is a HIGH blood glucose...it's as simple as that! Although there is always a low level of insulin secreted by the pancreas, the amount secreted into the blood increases as the blood glucose rises. Similarly, as blood glucose falls, the amount of insulin secreted by the pancreatic islets goes down. As can be seen in the picture, insulin has an effect on a number of cells, including muscle, red blood cells, and fat cells. In response to insulin, these cells absorb glucose out of the blood, having the net effect of lowering the high blood glucose levels into the normal range. Glucagon is secreted by the alpha cells of the pancreatic islets in much the same manner as insulin...except in the opposite direction. If blood glucose is high, then no glucagon is secreted. When blood glucose goes LOW, however, (such as between meals, and during Continue reading >>

How Insulin And Glucagon Work To Regulate Blood Sugar Levels

How Insulin And Glucagon Work To Regulate Blood Sugar Levels

The pancreas secretes insulin and glucagon, both of which play a vital role in regulating blood sugar levels. The two hormones work in balance. If the level of one hormone is outside the ideal range, blood sugar levels may spike or drop. Together, insulin and glucagon help keep conditions inside the body steady. When blood sugar is too high, the pancreas secretes more insulin. When blood sugar levels drop, the pancreas releases glucagon to bring them back up. Blood sugar and health The body converts carbohydrates from food into sugar (glucose), which serves as a vital source of energy. Blood sugar levels vary throughout the day but, in most instances, insulin and glucagon keep these levels normal. Health factors including insulin resistance, diabetes, and problems with diet can cause a person's blood sugar levels to soar or plummet. Blood sugar levels are measured in milligrams per decilitre (mg/dl). Ideal blood sugar ranges are as follows: Before breakfast - levels should be less than 100 mg/dl for a person without diabetes and 70-130 mg/dl for a person with diabetes. Two hours after meals - levels should be less than 140 mg/dl for a person without diabetes and less than 180 mg/dl for a person with diabetes. Blood sugar regulation Blood sugar levels are a measure of how effectively an individual's body uses glucose. When the body does not convert enough glucose for use, blood sugar levels remain high. Insulin helps the body's cells absorb glucose, lowering blood sugar and providing the cells with the glucose they need for energy. When blood sugar levels are too low, the pancreas releases glucagon. Glucagon forces the liver to release stored glucose, which causes the blood sugar to rise. Insulin and glucagon are both released by islet cells in the pancreas. These cells Continue reading >>

8 Tips To Avoid Blood Sugar Dips And Spikes

8 Tips To Avoid Blood Sugar Dips And Spikes

If you have type 2 diabetes and your blood sugar levels are racing up and down like a roller coaster, it's time to get off the ride. Big swings in your blood sugar can make you feel lousy. But even if you aren't aware of them, they can still increase your risk for a number of serious health problems. By making simple but specific adjustments to your lifestyle and diet, you can gain better blood-sugar control. Your body uses the sugar, also known as glucose, in the foods you eat for energy. Think of it as a fuel that keeps your body moving throughout the day. Blood Sugar Highs and Lows Type 2 diabetes decreases the body’s production of insulin, which is a hormone that regulates blood sugar. Without enough insulin, sugar builds up in the blood and can damage nerves and blood vessels. This increase of blood sugar also increases your risk for heart disease and stroke. Over time, high blood sugar, also known as hyperglycemia, can lead to more health problems, including kidney failure and blindness. "Keeping blood sugar stable can help prevent the long-term consequences of fluctuations," says Melissa Li-Ng, MD, an endocrinologist at the Cleveland Clinic in Ohio. Dr. Li-Ng explains that high blood sugar can cause a number of symptoms that include: Fatigue Increased thirst Blurry vision Frequent urination It's also important to know that you can have high blood sugar and still feel fine, but your body can still suffer damage, Li-Ng says. Symptoms of high blood sugar typically develop at levels above 200 milligrams per deciliter (mg/dL). "You can have high blood sugar that's between 150 and 199 and feel perfectly fine," Li-Ng says. Over time, your body can also get used to chronically high blood sugar levels, so you don’t feel the symptoms, she says. On the flip side, if you Continue reading >>

Controlling Blood Sugar Levels

Controlling Blood Sugar Levels

Glucose is a sugar needed by cells for respiration. It is important that the concentration of glucose in the blood is maintained at a constant level. Insulin, a hormone secreted by the pancreas, controls blood sugar levels in the body. It travels from the pancreas to the liver in the bloodstream. As with other responses controlled by hormones, the response is slower but longer lasting than if it had been controlled by the nervous system. Blood sugar levels- Higher tier What happens when glucose levels in the blood become too high or too low glucose level effect on pancreas effect on liver effect on glucose level too high insulin secreted into the blood liver converts glucose into glycogen goes down too low insulin not secreted into the blood liver does not convert glucose into glycogen goes up Use the animation to make sure you understand how this works. You have an old or no version of flash - you need to upgrade to view this funky content! Go to the WebWise Flash install guide Diabetes is a disorder in which the blood glucose levels remain too high. There are two main types of diabetes: Type 1, which usually develops during childhood Type 2, which usually develops in later life. The table summarises some differences between Type 1 and Type 2 diabetes. Some differences between Type 1 and Type 2 diabetes Type 1 diabetes Type 2 diabetes Who it mainly affects Children and teenagers. Adults under the age of 40. Adults, normally over the age of 40 (there is a greater risk in those who have poor diets and/or are overweight). How it works The pancreas stops making enough insulin. The body no longer responds to its insulin. How it is controlled Injections of insulin for life and an appropriate diet. Exercise and appropriate diet. When treating Type 1 diabetes, the dosage of in Continue reading >>

How Blood Sugar Affects Your Body

How Blood Sugar Affects Your Body

When you have diabetes, your blood sugar (glucose) levels may be consistently high. Over time, this can damage your body and lead to many other problems. How much sugar in the blood is too much? And why is high glucose so bad for you? Here’s a look at how your levels affect your health. They're less than 100 mg/dL after not eating (fasting) for at least 8 hours. And they're less than 140 mg/dL 2 hours after eating. During the day, levels tend to be at their lowest just before meals. For most people without diabetes, blood sugar levels before meals hover around 70 to 80 mg/dL. For some people, 60 is normal; for others, 90. What's a low sugar level? It varies widely, too. Many people's glucose won't ever fall below 60, even with prolonged fasting. When you diet or fast, the liver keeps your levels normal by turning fat and muscle into sugar. A few people's levels may fall somewhat lower. Doctors use these tests to find out if you have diabetes: Fasting plasma glucose test. The doctor tests your blood sugar levels after fasting for 8 hours and it’s higher than 126 mg/dL. Oral glucose tolerance test. After fasting for 8 hours, you get a special sugary drink. Two hours later your sugar level is higher than 200. Random check. The doctor tests your blood sugar and it’s higher than 200, plus you’re peeing more, always thirsty, and you’ve gained or lost a significant amount of weight. He’ll then do a fasting sugar level test or an oral glucose tolerance test to confirm the diagnosis. Any sugar levels higher than normal are unhealthy. Levels that are higher than normal, but not reaching the point of full-blown diabetes, are called prediabetes. According to the American Diabetes Association, 86 million people in the U.S. have this condition, which can lead to diabetes Continue reading >>

More in blood sugar