diabetestalk.net

What Happens To Excess Glucose In The Blood

Excess Glucose In The Blood And Insulin Response

Excess Glucose In The Blood And Insulin Response

Excess glucose in the bloodstream is a devastating health problem. In the extreme, the condition is called diabetes and it affects approximately 29 million Americans. Of these, 8 million are undiagnosed, which means they don’t know they are diabetic, and the longer it goes undetected the worse it gets and the greater the damage. In addition, it is estimated that at least one-third of the U.S. adult population has pre-diabetes (Metabolic Syndrome), and without intervention or lifestyle change most of these will graduate to full blown diabetes in the future. Glucose lingers in the blood and accumulates when insulin does not do its job of escorting glucose into the cells. This is because glucose cannot gain entrance into cells on its own. This is intelligent by design, because otherwise, it would be impossible to regulate blood glucose concentration. In fact, if glucose could leave the blood and enter cells on its own, it wouldn’t take much to drain the blood of glucose entirely. This would be a major disaster, because the brain is dependent upon glucose as its source of energy, and without an ongoing supply the brain would suffer severe damage. When blood glucose concentration increases after eating, the hormone insulin is released from the pancreas gland, which brings the concentration back to resting levels (normal range is 70-105 mg/dl). However, in diabetes, insulin either is absent due to a malfunction of the pancreas gland, or the cells of the body resist the effects of insulin. Either way, the result is the same. Too much glucose remains in the bloodstream. Thus, millions of Americans handle it poorly when they eat and glucose from digestion pours into their bloodstream. Therefore, anything that can be done to help meet this challenge is welcome. Above all, red Continue reading >>

How Sugar Makes You Fat

How Sugar Makes You Fat

Look at how many grams of sugar are in what you’re eating (on the nutritional label). Now divide that number by 4. That’s how many teaspoons of pure sugar you’re consuming. Kinda scary, huh? Sugar makes you fat and fatfree food isn’t really free of fat. I’ve said it before in multiple articles, but occasionally, I’ve had someone lean over my desk and say “How in the heck does sugar make you fat if there’s no fat in it?”. This article will answer that puzzler, and provide you with some helpful suggestions to achieve not only weight loss success, but improved body health. First, let’s make some qualifications. Sugar isn’t inherently evil. Your body uses sugar to survive, and burns sugar to provide you with the energy necessary for life. Many truly healthy foods are actually broken down to sugar in the body – through the conversion of long and complex sugars called polysaccharides into short and simple sugars called monosaccharides, such as glucose. In additions to the breakdown products of fat and protein, glucose is a great energy source for your body. However, there are two ways that sugar can sabotage your body and cause fat storage. Excess glucose is the first problem, and it involves a very simple concept. Anytime you have filled your body with more fuel than it actually needs (and this is very easy to do when eating foods with high sugar content), your liver’s sugar storage capacity is exceeded. When the liver is maximally full, the excess sugar is converted by the liver into fatty acids (that’s right – fat!) and returned to the bloodstream, where is taken throughout your body and stored (that’s right – as fat!) wherever you tend to store adipose fat cells, including, but not limited to, the popular regions of the stomach, hips, but Continue reading >>

How Insulin And Glucagon Work

How Insulin And Glucagon Work

Insulin and glucagon are hormones that help regulate the levels of blood glucose, or sugar, in your body. Glucose, which comes from the food you eat, moves through your bloodstream to help fuel your body. Insulin and glucagon work together to balance your blood sugar levels, keeping them in the narrow range that your body requires. These hormones are like the yin and yang of blood glucose maintenance. Read on to learn more about how they function and what can happen when they don’t work well. Insulin and glucagon work in what’s called a negative feedback loop. During this process, one event triggers another, which triggers another, and so on, to keep your blood sugar levels balanced. How insulin works During digestion, foods that contain carbohydrates are converted into glucose. Most of this glucose is sent into your bloodstream, causing a rise in blood glucose levels. This increase in blood glucose signals your pancreas to produce insulin. The insulin tells cells throughout your body to take in glucose from your bloodstream. As the glucose moves into your cells, your blood glucose levels go down. Some cells use the glucose as energy. Other cells, such as in your liver and muscles, store any excess glucose as a substance called glycogen. Your body uses glycogen for fuel between meals. Read more: Simple vs. complex carbs » How glucagon works Glucagon works to counterbalance the actions of insulin. About four to six hours after you eat, the glucose levels in your blood decrease, triggering your pancreas to produce glucagon. This hormone signals your liver and muscle cells to change the stored glycogen back into glucose. These cells then release the glucose into your bloodstream so your other cells can use it for energy. This whole feedback loop with insulin and gluca Continue reading >>

What Happens To Unburned Carbohydrates?

What Happens To Unburned Carbohydrates?

Your body uses mostly carbohydrates as well as fats for energy. Because the body doesn’t store carbs efficiently, they’re used first. Carbohydrates turn into glucose, which your body burns immediately or converts to glycogen to be stored in the muscles and liver for between meals. If you eat more calories from carbs or other sources than your body can use, the cells store the excess as fat. Of the three major nutrients -- carbohydrates, fat and protein -- the body burns carbs first for energy because they can’t be stored in great quantities. The carbohydrates in food get broken down into glucose, which moves into the small intestine, then the liver and into the blood. As blood sugar rises, the pancreas produces insulin, which signals the cells to take up sugar. Whatever glucose the cells don’t need immediately for energy is stored in the liver and muscles as glycogen. When the blood sugar levels fall -- such as between meals -- the liver releases glycogen. This cycle keeps your body supplied with a steady source of fuel. Insulin Resistance If you have insulin resistance or diabetes, the sugar-insulin cycle doesn’t work properly, leading to too much sugar and insulin circulating in the blood until eventually your body doesn’t produce enough insulin or is resistant to its effects. This is why people with diabetes or prediabetes often track the carbs they eat; eating too many carbohydrates, especially sugars and refined starches, can cause blood sugar and/or insulin to spike to potentially dangerous levels in people with diabetes. How Carbs Turn Into Fat When you eat too many calories, especially in the form of sugars and quickly burned starches, your body may reach its storage capacity for glycogen. The liver converts the stored sugars into triglycerides, or f Continue reading >>

The Liver And Blood Glucose Levels

The Liver And Blood Glucose Levels

Tweet Glucose is the key source of energy for the human body. Supply of this vital nutrient is carried through the bloodstream to many of the body’s cells. The liver produces, stores and releases glucose depending on the body’s need for glucose, a monosaccharide. This is primarily indicated by the hormones insulin - the main regulator of sugar in the blood - and glucagon. In fact, the liver acts as the body’s glucose reservoir and helps to keep your circulating blood sugar levels and other body fuels steady and constant. How the liver regulates blood glucose During absorption and digestion, the carbohydrates in the food you eat are reduced to their simplest form, glucose. Excess glucose is then removed from the blood, with the majority of it being converted into glycogen, the storage form of glucose, by the liver’s hepatic cells via a process called glycogenesis. Glycogenolysis When blood glucose concentration declines, the liver initiates glycogenolysis. The hepatic cells reconvert their glycogen stores into glucose, and continually release them into the blood until levels approach normal range. However, when blood glucose levels fall during a long fast, the body’s glycogen stores dwindle and additional sources of blood sugar are required. To help make up this shortfall, the liver, along with the kidneys, uses amino acids, lactic acid and glycerol to produce glucose. This process is known as gluconeogenesis. The liver may also convert other sugars such as sucrose, fructose, and galactose into glucose if your body’s glucose needs not being met by your diet. Ketones Ketones are alternative fuels that are produced by the liver from fats when sugar is in short supply. When your body’s glycogen storage runs low, the body starts conserving the sugar supplies fo Continue reading >>

What Happens To Your Body An Hour After Eating Sugar?

What Happens To Your Body An Hour After Eating Sugar?

INDYEATS What happens to your body an hour after eating sugar? Sugar is an important – and popular – part of our daily diet. Along with starch, it falls within the carbohydrate group as it consists of carbon, hydrogen and oxygen atoms and acts as fuel for the body. In fact, carbohydrates are our main source of energy, converted by the body to power our cells and keep us alive and growing. However, many of us are overindulging in the white stuff, with the average adult consuming approximately 63 grams (2.2 ounces), nearly 16 teaspoons, of sugar each day. That’s over twice the recommended daily intake. The main attraction to sugar, for both humans and animals, is its sweet taste. In nature, this is a useful indication of which foods are safe to eat, as poisonous fruits and plants tend to be sour or bitter, but in the modern world of processed foods and fizzy drinks, sweetness is mainly associated with pleasure. As a result, sugar is added to many of the foods we consume each day to artificially boost the flavour or texture, or act as a preservative by hindering the growth of bacteria. This may be good news for our taste buds, but it’s not so good for our health. By eating more sugar than our bodies actually need, we are storing the excess as fat, leading to an increase in obesity and many other health problems throughout the world. Keeping track of how much sugar we eat can be difficult, though, as it goes by many different names and is hidden in some unlikely foods. Plus, not all sugars are bad, but working out which ones are good can be a challenge. Find out below exactly what sugar does to your body. Sugar in the body When we digest sugar, enzymes in the small intestine break it down into glucose. This glucose is then released into the bloodstream, where it is Continue reading >>

Hyperglycemia: When Your Blood Glucose Level Goes Too High

Hyperglycemia: When Your Blood Glucose Level Goes Too High

Hyperglycemia means high (hyper) glucose (gly) in the blood (emia). Your body needs glucose to properly function. Your cells rely on glucose for energy. Hyperglycemia is a defining characteristic of diabetes—when the blood glucose level is too high because the body isn't properly using or doesn't make the hormone insulin. You get glucose from the foods you eat. Carbohydrates, such as fruit, milk, potatoes, bread, and rice, are the biggest source of glucose in a typical diet. Your body breaks down carbohydrates into glucose, and then transports the glucose to the cells via the bloodstream. Body Needs Insulin However, in order to use the glucose, your body needs insulin. This is a hormone produced by the pancreas. Insulin helps transport glucose into the cells, particularly the muscle cells. People with type 1 diabetes no longer make insulin to help their bodies use glucose, so they have to take insulin, which is injected under the skin. People with type 2 diabetes may have enough insulin, but their body doesn't use it well; they're insulin resistant. Some people with type 2 diabetes may not produce enough insulin. People with diabetes may become hyperglycemic if they don't keep their blood glucose level under control (by using insulin, medications, and appropriate meal planning). For example, if someone with type 1 diabetes doesn't take enough insulin before eating, the glucose their body makes from that food can build up in their blood and lead to hyperglycemia. Your endocrinologist will tell you what your target blood glucose levels are. Your levels may be different from what is usually considered as normal because of age, pregnancy, and/or other factors. Fasting hyperglycemia is defined as when you don't eat for at least eight hours. Recommended range without diabet Continue reading >>

10.) What Happens To Excess Glucose? - It Is Eliminated - It Is Ultimately Stored ...

10.) What Happens To Excess Glucose? - It Is Eliminated - It Is Ultimately Stored ...

10.) What happens to excess glucose? - it is eliminated - it is ultimately stored as fat -to causes glycogen stores to expand past capacity -it is converted to protein 11.) In times of carb deprivation, the body can create glucose from amino acids in a process called ______ -glycogenesis -gluconeogenesis -cellular uptake -glycogenolysis 12.) What substance does the pancreas secrete when blood glucose falls? -ketone bodies -glucagon -insulin -glycogen 13.) How does dietary fiber reduce blood cholesterol? -it digests the cholesterol -it hydrolyzes the cholesterol -it deactivates the cholesterol -it binds bile acids in the intestinal tract, which increases removal of cholesterol from the blood 14.) Which food would provide the lowes glycemic index? - baked potato with low-fat cheese -ice cream with chocolate syrup -popcorn -white bread with jam 15.) Which food contains the most carbs? - 1 cup of cooked corn -1 tablespoon of peanut butter -1/2 cup of raisins -1 cup low fat milk 17.) Refined grain foods to which vitamins and minerals are added back after processing are called ______ - health foods -processed -fortified -enriched 18.) Foods with natural sugars generally provide _____ compared with foods with added sugars -fewer nutrients and fewer kilocalories - less fiber and fewer kilocalories -more nutrients and more kilocalories -more nutrients and fewer kilocalories 19.) If you haven't eaten for a few (about four) hours, the body initiates _____, using _____ glycogen Torres to increase blood glucose levels -glycogenesis, liver and muscle -gluconeogensis; liver -glycogenolysis; liver -glycogenolysis; muscle 20.) The best place to identify whether sugars have been added to a food product is _____ -nutrient content claim -the ingredients list -the nutrition facts panel -the Continue reading >>

Does Carbohydrate Become Body Fat?

Does Carbohydrate Become Body Fat?

Dear Reader, Ah, poor carbohydrates, maligned by diets such as Atkins’ and the ketogenic diet. However, carbohydrates are your body’s main source of energy — in fact your muscles and brain cells prefer carbs more than other sources of energy (triglycerides and fat, for example). To answer your question: research completed over the last several decades suggests that if you are eating a diet that is appropriate for your levels of daily activity, little to no carbohydrate is converted to fat in your body. For most people (unless you have a metabolic disorder) when you eat carbs they are digested, broken down to glucose, and then transported to all the cells in your body. They are then metabolized and used to support cellular processes. If you’re active and eating appropriately for your activity level, most of the carbs you consume are more or less burned immediately. There are two caveats here: first, if you’re eating a lot more calories per day than you are burning, then yes, your liver will convert excess calories from carbohydrate into fats; second, not all carbs are created equal. If you consume too many calories from simple sugars like sucrose and fructose (think sugary sodas sweetened by sugar and high fructose corn syrup) then your body will more readily take some of those sugars and turn them into triglycerides (fat) in your liver. What happens to excess calories that come from carbs? The answer depends on several things: what kind of carbs you consumed, your genetics, as well as how many extra calories we’re talking about. For those who eat a well-balanced diet and have no metabolic disorders, excess dietary carbohydrates are converted by the liver into complex chains of glucose called glycogen. Glycogen is stored in liver and muscle cells and is a sec Continue reading >>

Ketosis, Ketones, And How It All Works

Ketosis, Ketones, And How It All Works

Ketosis is a process that the body does on an everyday basis, regardless of the number of carbs you eat. Your body adapts to what is put in it, processing different types of nutrients into the fuels that it needs. Proteins, fats, and carbs can all be processed for use. Eating a low carb, high fat diet just ramps up this process, which is a normal and safe chemical reaction. When you eat carbohydrate based foods or excess amounts of protein, your body will break this down into sugar – known as glucose. Why? Glucose is needed in the creation of ATP (an energy molecule), which is a fuel that is needed for the daily activities and maintenance inside our bodies. If you’ve ever used our keto calculator to determine your caloric needs, you will see that your body uses up quite a lot of calories. It’s true, our bodies use up much of the nutrients we intake just to maintain itself on a daily basis. If you eat enough food, there will likely be an excess of glucose that your body doesn’t need. There are two main things that happen to excess glucose if your body doesn’t need it: Glycogenesis. Excess glucose will be converted to glycogen and stored in your liver and muscles. Estimates show that only about half of your daily energy can be stored as glycogen. Lipogenesis. If there’s already enough glycogen in your muscles and liver, any extra glucose will be converted into fats and stored. So, what happens to you once your body has no more glucose or glycogen? Ketosis happens. When your body has no access to food, like when you are sleeping or when you are on a ketogenic diet, the body will burn fat and create molecules called ketones. We can thank our body’s ability to switch metabolic pathways for that. These ketones are created when the body breaks down fats, creating Continue reading >>

How Is Excess Glucose Stored?

How Is Excess Glucose Stored?

The human body has an efficient and complex system of storing and preserving energy. Glucose is a type of sugar that the body uses for energy. Glucose is the product of breaking down carbohydrates into their simplest form. Carbohydrates should make up approximately 45 to 65 percent of your daily caloric intake, according to MayoClinic.com. Video of the Day Glucose is a simple sugar found in carbohydrates. When more complex carbohydrates such as polysaccharides and disaccharides are broken down in the stomach, they break down into the monosaccharide glucose. Carbohydrates serve as the primary energy source for working muscles, help brain and nervous system functioning and help the body use fat more efficiently. Function of Glucose Once carbohydrates are absorbed from food, they are carried to the liver for processing. In the liver, fructose and galactose, the other forms of sugar, are converted into glucose. Some glucose gets sent to the bloodstream while the rest is stored for later energy use. Once glucose is inside the liver, glucose is phosphorylated into glucose-6-phosphate, or G6P. G6P is further metabolized into triglycerides, fatty acids, glycogen or energy. Glycogen is the form in which the body stores glucose. The liver can only store about 100 g of glucose in the form of glycogen. The muscles also store glycogen. Muscles can store approximately 500 g of glycogen. Because of the limited storage areas, any carbohydrates that are consumed beyond the storage capacity are converted to and stored as fat. There is practically no limit on how many calories the body can store as fat. The glucose stored in the liver serves as a buffer for blood glucose levels. Therefore, if the blood glucose levels start to get low because you have not consumed food for a period of time Continue reading >>

Blood Glucose Regulation

Blood Glucose Regulation

Glucose is needed by cells for respiration. It is important that the concentration of glucose in the blood is maintained at a constant level. Insulin is a hormone produced by the pancreas that regulates glucose levels in the blood. How glucose is regulated Glucose level Effect on pancreas Effect on liver Effect on glucose level too high insulin secreted into the blood liver converts glucose into glycogen goes down too low insulin not secreted into the blood liver does not convert glucose into glycogen goes up Use the animation to make sure you understand how this works. You have an old or no version of flash - you need to upgrade to view this funky content! Go to the WebWise Flash install guide Glucagon – Higher tier The pancreas releases another hormone, glucagon, when the blood sugar levels fall. This causes the cells in the liver to turn glycogen back into glucose which can then be released into the blood. The blood sugar levels will then rise. Now try a Test Bite- Higher tier. Diabetes is a disorder in which the blood glucose levels remain too high. It can be treated by injecting insulin. The extra insulin allows the glucose to be taken up by the liver and other tissues, so cells get the glucose they need and blood-sugar levels stay normal. There are two types of diabetes. Type 1 diabetes Type 1 diabetes is caused by a lack of insulin. It can be controlled by: monitoring the diet injecting insulin People with type 1 diabetes have to monitor their blood sugar levels throughout the day as the level of physical activity and diet affect the amount of insulin required. Type 2 diabetes Type 2 diabetes is caused by a person becoming resistant to insulin. It can be controlled by diet and exercise. There is a link between rising levels of obesity (chronic overweight) and i Continue reading >>

How Sugar, Not Fat, Raises Your Cholesterol

How Sugar, Not Fat, Raises Your Cholesterol

Excess carbohydrates and sugar lead to cholesterol and weight gain, explains Dr. Doni Wilson, which is why balancing blood sugar levels every day is so important. When you go to the doctor and get a cholesterol reading, you may be cautioned against eating high-fat foods. But very little fat from foods becomes cholesterol in your blood. What produces cholesterol is rather the excessive consumption of carbs at any one time. The cholesterol and triglycerides in your bloodstream come not from consuming excess fat, but rather, from consuming excess glucose. I’m not just talking about excess glucose over the course of a week or even a day. I’m talking about what happens when you consume excess glucose in one sitting. Let’s take a closer look at exactly happens when your body gets too many carbs at one particular meal. First, you digest the carb-containing food, breaking it down into the individual glucose molecules that are small enough to cross the cells of your intestinal walls and enter your bloodstream. Because you have eaten too many carbs, you have far too much glucose stuck in your blood. You don’t have enough insulin to move all that glucose into your cells. So what happens to that excess glucose? Some of it is stored in your liver as a substance known as glycogen, to be released when you don’t eat. Harking back to our hunter-gatherer days, our bodies created a backup system to ensure that even if we can’t get any food for a couple of days, we won’t starve to death. The liver can only hold so much glycogen, however. So what about the glucose that doesn’t fit? Your body has three choices: convert the glucose into body fat, which translates into weight gain, most likely around your middle; convert the glucose into lipids (fats), which remain in your bloo Continue reading >>

This Is Exactly What Happens To Your Body When You Eat A Ton Of Sugar

This Is Exactly What Happens To Your Body When You Eat A Ton Of Sugar

As mouth-watering as a sugar-laden sundae or icing-topped cupcake is, we should all know by now that sugar isn't exactly healthy. In fact, it may be one of the worst things you can eat (that is, if you're trying to live a long, healthy life). One study from UC San Francisco actually found that drinking sugary drinks like soda can age your body on a cellular level as quickly as cigarettes. The way the sweet stuff impacts your body is way more complex than just causing weight gain. In fact, when you eat a ton of sugar, almost every part of your body feels the strain—and that's bad news for your health in both the short term and especially the long term. From an initial insulin spike to upping your chances of kidney failure down the road, this is what really happens in your body when you load up on sugar. Your brain responds to sugar the same way it would to cocaine. Eating sugar creates a surge of feel-good brain chemicals dopamine and serotonin. So does using certain drugs, like cocaine. And just like a drug, your body craves more after the initial high. "You then become addicted to that feeling, so every time you eat it you want to eat more," explains Gina Sam, M.D., M.P.H., director of the Gastrointestinal Motility Center at The Mount Sinai Hospital. Your insulin spikes to regulate your blood sugar. "Once you eat glucose, your body releases insulin, a hormone from your pancreas," Dr. Sam explains. The insulin's job is to absorb the excess glucose in the blood and stabilize sugar levels. And a little while later you get that familiar sugar crash. Once the insulin does its job, your blood sugar drops again. Which means you've just experienced a sugar rush, and then a drastic drop, leaving you feeling drained. "That's the feeling you get when you've gone to the buffet a Continue reading >>

Absorbing And Storing Energy: How The Body Controls Glucose

Absorbing And Storing Energy: How The Body Controls Glucose

Editor’s note: Physicians have a special place among the thinkers who have elaborated the argument for intelligent design. Perhaps that’s because, more than evolutionary biologists, they are familiar with the challenges of maintaining a functioning complex system, the human body. With that in mind, Evolution News is delighted to offer this series, “The Designed Body.” For the complete series, see here. Dr. Glicksman practices palliative medicine for a hospice organization. Just like a car needs the energy, in the form of gasoline, to run properly, the body needs the energy in glucose to survive. When we haven’t eaten for a while, our blood glucose level drops and our stomach is empty, causing the hunger center in our brain to tell us to eat or drink something with calories. As I have explained in my last couple of articles, the complex molecules that are in what we eat and drink enter the gastrointestinal system, where digestive enzymes break them down into simpler molecules so the body can absorb them. Carbohydrates are broken down into simple sugars, like glucose, which are then absorbed into the blood. Tissues, such as the brain and other organs, rapidly absorb some of this glucose, to be used for their immediate energy needs. However, the amount of glucose absorbed after a meal is usually much more than what the tissues can use right away, causing excess. The body is able to chemically link these excess glucose molecules together to form a carbohydrate called glycogen. Most of the glycogen in the body is made and stored in the liver, with smaller amounts in the muscles, kidneys, and other tissues. Once the liver and other tissues have filled up their glycogen stores, any excess glucose is stored as fat, apparently without limit. These tissues can use this Continue reading >>

More in blood sugar