diabetestalk.net

How Does The Body Deal With Excess Glucose?

This Is Exactly What Happens To Your Body When You Eat A Ton Of Sugar

This Is Exactly What Happens To Your Body When You Eat A Ton Of Sugar

As mouth-watering as a sugar-laden sundae or icing-topped cupcake is, we should all know by now that sugar isn't exactly healthy. In fact, it may be one of the worst things you can eat (that is, if you're trying to live a long, healthy life). One study from UC San Francisco actually found that drinking sugary drinks like soda can age your body on a cellular level as quickly as cigarettes. The way the sweet stuff impacts your body is way more complex than just causing weight gain. In fact, when you eat a ton of sugar, almost every part of your body feels the strain—and that's bad news for your health in both the short term and especially the long term. From an initial insulin spike to upping your chances of kidney failure down the road, this is what really happens in your body when you load up on sugar. Your brain responds to sugar the same way it would to cocaine. Eating sugar creates a surge of feel-good brain chemicals dopamine and serotonin. So does using certain drugs, like cocaine. And just like a drug, your body craves more after the initial high. "You then become addicted to that feeling, so every time you eat it you want to eat more," explains Gina Sam, M.D., M.P.H., director of the Gastrointestinal Motility Center at The Mount Sinai Hospital. Your insulin spikes to regulate your blood sugar. "Once you eat glucose, your body releases insulin, a hormone from your pancreas," Dr. Sam explains. The insulin's job is to absorb the excess glucose in the blood and stabilize sugar levels. And a little while later you get that familiar sugar crash. Once the insulin does its job, your blood sugar drops again. Which means you've just experienced a sugar rush, and then a drastic drop, leaving you feeling drained. "That's the feeling you get when you've gone to the buffet a Continue reading >>

Does Carbohydrate Become Body Fat?

Does Carbohydrate Become Body Fat?

Dear Reader, Ah, poor carbohydrates, maligned by diets such as Atkins’ and the ketogenic diet. However, carbohydrates are your body’s main source of energy — in fact your muscles and brain cells prefer carbs more than other sources of energy (triglycerides and fat, for example). To answer your question: research completed over the last several decades suggests that if you are eating a diet that is appropriate for your levels of daily activity, little to no carbohydrate is converted to fat in your body. For most people (unless you have a metabolic disorder) when you eat carbs they are digested, broken down to glucose, and then transported to all the cells in your body. They are then metabolized and used to support cellular processes. If you’re active and eating appropriately for your activity level, most of the carbs you consume are more or less burned immediately. There are two caveats here: first, if you’re eating a lot more calories per day than you are burning, then yes, your liver will convert excess calories from carbohydrate into fats; second, not all carbs are created equal. If you consume too many calories from simple sugars like sucrose and fructose (think sugary sodas sweetened by sugar and high fructose corn syrup) then your body will more readily take some of those sugars and turn them into triglycerides (fat) in your liver. What happens to excess calories that come from carbs? The answer depends on several things: what kind of carbs you consumed, your genetics, as well as how many extra calories we’re talking about. For those who eat a well-balanced diet and have no metabolic disorders, excess dietary carbohydrates are converted by the liver into complex chains of glucose called glycogen. Glycogen is stored in liver and muscle cells and is a sec Continue reading >>

Hyperglycemia: When Your Blood Glucose Level Goes Too High

Hyperglycemia: When Your Blood Glucose Level Goes Too High

Hyperglycemia means high (hyper) glucose (gly) in the blood (emia). Your body needs glucose to properly function. Your cells rely on glucose for energy. Hyperglycemia is a defining characteristic of diabetes—when the blood glucose level is too high because the body isn't properly using or doesn't make the hormone insulin. You get glucose from the foods you eat. Carbohydrates, such as fruit, milk, potatoes, bread, and rice, are the biggest source of glucose in a typical diet. Your body breaks down carbohydrates into glucose, and then transports the glucose to the cells via the bloodstream. Body Needs Insulin However, in order to use the glucose, your body needs insulin. This is a hormone produced by the pancreas. Insulin helps transport glucose into the cells, particularly the muscle cells. People with type 1 diabetes no longer make insulin to help their bodies use glucose, so they have to take insulin, which is injected under the skin. People with type 2 diabetes may have enough insulin, but their body doesn't use it well; they're insulin resistant. Some people with type 2 diabetes may not produce enough insulin. People with diabetes may become hyperglycemic if they don't keep their blood glucose level under control (by using insulin, medications, and appropriate meal planning). For example, if someone with type 1 diabetes doesn't take enough insulin before eating, the glucose their body makes from that food can build up in their blood and lead to hyperglycemia. Your endocrinologist will tell you what your target blood glucose levels are. Your levels may be different from what is usually considered as normal because of age, pregnancy, and/or other factors. Fasting hyperglycemia is defined as when you don't eat for at least eight hours. Recommended range without diabet Continue reading >>

Converting Carbohydrates To Triglycerides

Converting Carbohydrates To Triglycerides

Consumers are inundated with diet solutions on a daily basis. High protein, low fat, non-impact carbohydrates, and other marketing “adjectives” are abundant within food manufacturing advertising. Of all the food descriptors, the most common ones individuals look for are “fat free” or “low fat”. Food and snack companies have found the low fat food market to be financially lucrative. The tie between fat intake, weight gain, and health risks has been well documented. The dietary guidelines suggest to keep fat intake to no more than 30% of the total diet and to consume foods low in saturated and trans fatty acids. But, this does not mean that we can consume as much fat free food as we want: “Fat free does not mean calorie free.” In many cases the foods that are low in fat have a large amount of carbohydrates. Carbohydrate intake, like any nutrient, can lead to adverse affects when over consumed. Carbohydrates are a necessary macronutrient, vital for maintenance of the nervous system and energy for physical activity. However, if consumed in amounts greater than 55% to 65% of total caloric intake as recommended by the American Heart Association can cause an increase in health risks. According to the World Health Organization the Upper Limit for carbohydrates for average people is 60% of the total dietary intake. Carbohydrates are formed in plants where carbons are bonded with oxygen and hydrogen to form chains of varying complexity. The complexity of the chains ultimately determines the carbohydrate classification and how they will digest and be absorbed in the body. Mono-and disaccharides are classified as simple carbohydrates, whereas polysaccharides (starch and fiber) are classified as complex. All carbohydrates are broken down into monosaccharides before b Continue reading >>

How Insulin And Glucagon Work

How Insulin And Glucagon Work

Insulin and glucagon are hormones that help regulate the levels of blood glucose, or sugar, in your body. Glucose, which comes from the food you eat, moves through your bloodstream to help fuel your body. Insulin and glucagon work together to balance your blood sugar levels, keeping them in the narrow range that your body requires. These hormones are like the yin and yang of blood glucose maintenance. Read on to learn more about how they function and what can happen when they don’t work well. Insulin and glucagon work in what’s called a negative feedback loop. During this process, one event triggers another, which triggers another, and so on, to keep your blood sugar levels balanced. How insulin works During digestion, foods that contain carbohydrates are converted into glucose. Most of this glucose is sent into your bloodstream, causing a rise in blood glucose levels. This increase in blood glucose signals your pancreas to produce insulin. The insulin tells cells throughout your body to take in glucose from your bloodstream. As the glucose moves into your cells, your blood glucose levels go down. Some cells use the glucose as energy. Other cells, such as in your liver and muscles, store any excess glucose as a substance called glycogen. Your body uses glycogen for fuel between meals. Read more: Simple vs. complex carbs » How glucagon works Glucagon works to counterbalance the actions of insulin. About four to six hours after you eat, the glucose levels in your blood decrease, triggering your pancreas to produce glucagon. This hormone signals your liver and muscle cells to change the stored glycogen back into glucose. These cells then release the glucose into your bloodstream so your other cells can use it for energy. This whole feedback loop with insulin and gluca Continue reading >>

How The Body Decreases Blood Glucose Concentrations After Eating

How The Body Decreases Blood Glucose Concentrations After Eating

Whilst this course has been primarily created for healthcare professionals to help reduce concerns around prescribing and managing insulin, we hope that it is of interest to people with diabetes who do not have regular access to a healthcare professional and who want to find out more about how insulin works. With this in mind, in this article, as in others throughout the course, there is a brief section at the top called ‘Essential knowledge’ that summarises the key things that you need to know. The next section ‘In greater depth’ goes into a bit more detail and expands on the explanation (this is aimed at healthcare professionals but may be too technical in nature for some of you). Please don’t let that put you off continuing with the course! Essential knowledge How is glucose produced? Glucose is produced by breaking down carbohydrates, principally in the small intestine, when we eat a meal containing carbohydrates (such as pasta or bread). This glucose enters the bloodstream. When fasting our blood glucose is normally about 4.5-5.5 mmol/L but this can rise to 7 mmol/L or above when eating, yet it returns to normal within 2 hours of eating. How does our body manage this? Glucose cannot cross cell membranes without using transport proteins and insulin is required to facilitate the removal of glucose from the blood stream so that it enters cells. When glucose is in excess, the body stores it away in the form of glycogen in a process stimulated by insulin. Glycogen is a large highly branched structure, made from lots of glucose molecules linked together. When required, glycogen can be easily and rapidly broken down again to form glucose. Glycogen is mainly stored in the liver (where it makes up as much as 10% of liver weight and can be released back into the bl Continue reading >>

Nutrition: Ch 4

Nutrition: Ch 4

Sort - Enhances flavor - Supplies texture and color to baked goods - Provides fuel for fermentation, causing break to rise of producing alcohol - Acts as a bulking agent in ice cream and baked goods - Balances the acidity of tomato- and vinegar- based products As an additive, sugar: Table sugar = 2 monosaccharides bonded together as a disaccharide, sucrose whereas in honey some of them are free Both contain glucose and fructose and both end up as glucose and fructose in the body Similarities / differences honey vs table sugar - Limit between-meal juices and snacks containing sugars and starches - Brush with fluoride - Floss - Rinse with water if brushing and flossing are not possible - Routine dental checkups To prevent dental caries: Continue reading >>

How Is Excess Glucose Stored?

How Is Excess Glucose Stored?

The human body has an efficient and complex system of storing and preserving energy. Glucose is a type of sugar that the body uses for energy. Glucose is the product of breaking down carbohydrates into their simplest form. Carbohydrates should make up approximately 45 to 65 percent of your daily caloric intake, according to MayoClinic.com. Video of the Day Glucose is a simple sugar found in carbohydrates. When more complex carbohydrates such as polysaccharides and disaccharides are broken down in the stomach, they break down into the monosaccharide glucose. Carbohydrates serve as the primary energy source for working muscles, help brain and nervous system functioning and help the body use fat more efficiently. Function of Glucose Once carbohydrates are absorbed from food, they are carried to the liver for processing. In the liver, fructose and galactose, the other forms of sugar, are converted into glucose. Some glucose gets sent to the bloodstream while the rest is stored for later energy use. Once glucose is inside the liver, glucose is phosphorylated into glucose-6-phosphate, or G6P. G6P is further metabolized into triglycerides, fatty acids, glycogen or energy. Glycogen is the form in which the body stores glucose. The liver can only store about 100 g of glucose in the form of glycogen. The muscles also store glycogen. Muscles can store approximately 500 g of glycogen. Because of the limited storage areas, any carbohydrates that are consumed beyond the storage capacity are converted to and stored as fat. There is practically no limit on how many calories the body can store as fat. The glucose stored in the liver serves as a buffer for blood glucose levels. Therefore, if the blood glucose levels start to get low because you have not consumed food for a period of time Continue reading >>

Blood Glucose Regulation

Blood Glucose Regulation

Glucose is needed by cells for respiration. It is important that the concentration of glucose in the blood is maintained at a constant level. Insulin is a hormone produced by the pancreas that regulates glucose levels in the blood. How glucose is regulated Glucose level Effect on pancreas Effect on liver Effect on glucose level too high insulin secreted into the blood liver converts glucose into glycogen goes down too low insulin not secreted into the blood liver does not convert glucose into glycogen goes up Use the animation to make sure you understand how this works. You have an old or no version of flash - you need to upgrade to view this funky content! Go to the WebWise Flash install guide Glucagon – Higher tier The pancreas releases another hormone, glucagon, when the blood sugar levels fall. This causes the cells in the liver to turn glycogen back into glucose which can then be released into the blood. The blood sugar levels will then rise. Now try a Test Bite- Higher tier. Diabetes is a disorder in which the blood glucose levels remain too high. It can be treated by injecting insulin. The extra insulin allows the glucose to be taken up by the liver and other tissues, so cells get the glucose they need and blood-sugar levels stay normal. There are two types of diabetes. Type 1 diabetes Type 1 diabetes is caused by a lack of insulin. It can be controlled by: monitoring the diet injecting insulin People with type 1 diabetes have to monitor their blood sugar levels throughout the day as the level of physical activity and diet affect the amount of insulin required. Type 2 diabetes Type 2 diabetes is caused by a person becoming resistant to insulin. It can be controlled by diet and exercise. There is a link between rising levels of obesity (chronic overweight) and i Continue reading >>

What Happens To Excess Protein?

What Happens To Excess Protein?

Li Z, Treyzon L, Chen S, Yan E, Thames G, Carpenter CL. Protein-enriched meal replacements do not adversely affect liver, kidney or bone density: an outpatient randomized controlled trial. Nutr J 2011;9(1):72. BACKGROUND: There is concern that recommending protein-enriched meal replacements as part of a weight management program could lead to changes in biomarkers of liver or renal function and reductions in bone density. This study was designed as a placebo-controlled clinical trial utilizing two isocaloric meal plans utilizing either a high protein-enriched (HP) or a standard protein (SP) meal replacement in an outpatient weight loss program. Subjects/methods: 100 obese men and women over 30 years of age with a body mass index (BMI) between 27 to 40 kg/m2 were randomized to one of two isocaloric weight loss meal plans 1). HP group: providing 2.2 g protein/kg of lean body mass (LBM)/day or 2). SP group: providing 1.1 g protein/kg LBM/day. Meal replacement (MR) was used twice daily (one meal, one snack) for 3 months and then once a day for 9 months. Body weight, lipid profiles, liver function, renal function and bone density were measured at baseline and 12 months. CONCLUSIONS: These studies demonstrate that protein-enriched meals replacements as compared to standard meal replacements recommended for weight management do not have adverse effects on routine measures of liver function, renal function or bone density at one year. Continue reading >>

Tag Archives: Excess Glucose Health Problems

Tag Archives: Excess Glucose Health Problems

Do you know what a normal blood sugar reading is? Better yet, do you know what your blood sugar reading is? If you do, that’s great. However, you should know that the established criterion for fasting glucose (up to 100 mg/dL is considered normal) has been outdated for quite some time. Fasting glucose should be less than 86 mg/dL. Studies show that excess glucose damages your body, long before a diagnosis of either prediabetes or diabetes is established. Glucose crosses the digestive lining, moves into the bloodstream, and enters cells where it is used as energy. Alpha glucosidase, an enzyme in the intestines, transports glucose from the gut and into the bloodstream. Insulin is the hormone that takes up glucose into cells. Insulin, however, does more than regulate blood glucose levels. It is also involved in stimulating cell growth and differentiation. Excess Glucose is Sticky Business Unfortunately, the Western diet is made up of carbohydrate-rich foods that produce an excess amount of glucose after meals. Sugar spikes after meals results in excess sugars stored as fat, which causes weight gain and leads to obesity. Extra glucose circulating in the bloodstream also damages endothelial cells, which makes up the inner wall of blood vessels. The sticky glucose molecules promote inflammation within the arteries; overtime, the damage caused by excess glucose will develop into vascular disease affecting the heart and brain health. In integrative medicine, practitioners recognize that excess glucose increases the risk for many chronic diseases other than type 2 diabetes (such as cardiovascular disease, dementia, and cancer). Because glucose is a modifiable risk factor for the development of these chronic conditions, it is imperative that experts begin to recognize that a fa Continue reading >>

How The Body Controls Blood Sugar - Topic Overview

How The Body Controls Blood Sugar - Topic Overview

The bloodstream carries glucose-a type of sugar produced from the digestion of carbohydrates and other foods-to provide energy to cells throughout the body. Unused glucose is stored mainly in the liver as glycogen. Insulin, glucagon, and other hormone levels rise and fall to keep blood sugar in a normal range. Too little or too much of these hormones can cause blood sugar levels to fall too low (hypoglycemia) or rise too high (hyperglycemia). Normally, blood glucose levels increase after you eat a meal. When blood sugar rises, cells in the pancreas release insulin, causing the body to absorb glucose from the blood and lowering the blood sugar level to normal. When blood sugar drops too low, the level of insulin declines and other cells in the pancreas release glucagon, which causes the liver to turn stored glycogen back into glucose and release it into the blood. This brings blood sugar levels back up to normal. Continue reading >>

Blood Sugar Or Blood Glucose: What Does It Do?

Blood Sugar Or Blood Glucose: What Does It Do?

Blood sugar, or blood glucose, is sugar that the bloodstream carries to all the cells in the body to supply energy. Blood sugar or blood glucose measurements represent the amount of sugar being transported in the blood during one instant. The sugar comes from the food we eat. The human body regulates blood glucose levels so that they are neither too high nor too low. The blood's internal environment must remain stable for the body to function. This balance is known as homeostasis. The sugar in the blood is not the same as sucrose, the sugar in the sugar bowl. There are different kinds of sugar. Sugar in the blood is known as glucose. Blood glucose levels change throughout the day. After eating, levels rise and then settle down after about an hour. They are at their lowest point before the first meal of the day, which is normally breakfast. How does sugar get into the body's cells? When we eat carbohydrates, such as sugar, or sucrose, our body digests it into glucose, a simple sugar that can easily convert to energy. The human digestive system breaks down carbohydrates from food into various sugar molecules. One of these sugars is glucose, the body's main source of energy. The glucose goes straight from the digestive system into the bloodstream after food is consumed and digested. But glucose can only enter cells if there is insulin in the bloodstream too. Without insulin, the cells would starve. After we eat, blood sugar concentrations rise. The pancreas releases insulin automatically so that the glucose enters cells. As more and more cells receive glucose, blood sugar levels return to normal again. Excess glucose is stored as glycogen, or stored glucose, in the liver and the muscles. Glycogen plays an important role in homeostasis, because it helps our body function du Continue reading >>

What Happens To Carbohydrates That The Body Does Not Use For Energy?

What Happens To Carbohydrates That The Body Does Not Use For Energy?

There are three types of carbohydrates: starch, sugar and fiber. Starches are broken down into sugars, including the glucose that provides your body with energy and is the preferred source of energy for your brain. However, not all carbohydrates are immediately used for energy. Some glucose is stored for later use, and fiber is not used for energy at all. Your body cannot digest fiber, but it provides health benefits, including lowering your risk for high cholesterol, heart disease, diabetes and constipation. While a small amount of fiber is fermented by bacteria in your colon and turned into short-chain fatty acids, which are easily absorbed by your body, most fiber passes through your body undigested and is excreted in your feces. Storage as Glycogen After carbohydrates are broken down in your body, some of the glucose that isn't needed immediately for energy is stored as glycogen in your liver and muscles for later use. Athletes sometimes consume high amounts of carbohydrates prior to major events in an effort to increase their glycogen stores, since glycogen is one of the main types of fuel for exercise. Storage as Fat Once your glycogen stores are filled, excess glucose may be stored as fat. However, storage of extra carbohydrate as fat is not very efficient, according to the Food and Agriculture Organization. Diets high in carbohydrates, especially complex carbohydrates, are less likely to result in fat accumulation than diets high in fat. Considerations The Food and Agriculture Organization recommends getting at least 55 percent of your calories from carbohydrates, and the 2010 Dietary Guidelines for Americans recommends consuming between 45 and 65 percent of your calories as carbohydrates, with most of these carbohydrates coming from nutrient-dense carbohydrate Continue reading >>

What Happens To Excess Glucose?

What Happens To Excess Glucose?

Science Biology When the body detects increased levels of glucose or amino acids in the small intestine, beta cells in the pancreas secrete a hormone called insulin that promotes the absorption of glucose by cells in the body. Insulin is also responsible for signalling the conversion of glucose into glycogen. Another method the body has for handling excess glucose is to eliminate some of the glucose in the urine. In most cases, the glucose that makes its way to the urine is reabsorbed through the sodium-glucose cotransporter 2 channels in the kidney nephrons. These transporters reabsorb glucose and send it back into the bloodstream. If these transporters become saturated by high levels of glucose, the excess glucose is excreted in the urine. Certain medications, like the anti-diabetic drug canagliflozin, are specifically designed to inhibit the action of SGLT-2 and promote glucose loss. One of the hallmark symptoms of diabetes is glucose in the urine. Learn more about Biology Continue reading >>

More in blood sugar