What Are The Causes Of Metabolic Acidosis And Alkalosis?

Share on facebook

Metabolic Acidosis

Metabolic acidosis is primary reduction in bicarbonate (HCO3−), typically with compensatory reduction in carbon dioxide partial pressure (Pco2); pH may be markedly low or slightly subnormal. Metabolic acidoses are categorized as high or normal anion gap based on the presence or absence of unmeasured anions in serum. Causes include accumulation of ketones and lactic acid, renal failure, and drug or toxin ingestion (high anion gap) and GI or renal HCO3− loss (normal anion gap). Symptoms and signs in severe cases include nausea and vomiting, lethargy, and hyperpnea. Diagnosis is clinical and with ABG and serum electrolyte measurement. The cause is treated; IV sodium bicarbonate may be indicated when pH is very low. Acidemia (arterial pH < 7.35) results when acid load overwhelms respiratory compensation. Causes are classified by their effect on the anion gap (see The Anion Gap and see Table: Causes of Metabolic Acidosis). High anion gap acidosis Ketoacidosis is a common complication of type 1 diabetes mellitus (see diabetic ketoacidosis), but it also occurs with chronic alcoholism (see alcoholic ketoacidosis), undernutrition, and, to a lesser degree, fasting. In these conditions, t Continue reading >>

Share on facebook

Popular Questions

  1. sonias

    3 This is my topic for this week in nursing school, respiratory & metabolic acidosis/ alkalosis. I am having trouble breaking it down. Can someone please help me understand this please? Any and all help is greatly appreciated.

  2. Esme12

    Normal values:
    PH = 7.35 - 7.45
    C02 = 35 - 45
    HC03 = 21-26
    Respiratory acidosis = low ph and high C02
    hypoventilation (eg: COPD, narcs or sedatives, atelectasis)
    *Compensated by metabolic alkalosis (increased HC03)
    For example:
    ph 7.20 C02 60 HC03 24 (uncompensated respiratory acidosis)
    ph 7.33 C02 55 HC03 29 (partially compensated respiratory acidosis)
    ph 7.37 C02 60 HC03 37 (compensated respiratory acidosis)
    Respiratory alkalosis : high ph and low C02
    hyperventilation (eg: anxiety, PE, pain, sepsis, brain injury)
    *Compensated by metabolic acidosis (decreased HC03)
    ph 7.51 C02 26 HC03 25 (uncompensated respiratory alkalosis)
    ph 7.47 C02 32 HC03 20 (partially compensated respiratory alkalosis)
    ph 7.43 C02 30 HC03 19 (compensated respiratory alkalosis)
    Metabolic acidosis : low ph and low HC03
    diabetic ketoacidosis, starvation, severe diarrhea
    *Compensated by respiratory alkalosis (decreased C02)
    ph 7.23 C02 36 HC03 14 (uncompensated metabolic acidosis)
    ph 7.31 C02 30 HC03 17 (partially compensated metabolic acidosis)
    ph 7.38 C02 26 HC03 20 (compensated metabolic acidosis)
    Metabloic alkalosis = high ph and high HC03
    severe vomiting, potassium deficit, diuretics
    *Compensated by respiratory acidosis (increased C02)
    ph 7.54 C02 44 HC03 29 (uncompensated metabolic alkalosis)
    ph 7.50 C02 49 HC03 32 (partially compensated metabolic alkalosis)
    ph 7.44 C02 52 HC02 35 (compensated metabolic alkalosis)
    *Remember that compensation corrects the ph.
    Now a simple way to remember this......
    CO2 = acid, makes things acidic
    HCO3 = base, makes things alkalotic
    Remember ROME
    Ok always look at the pH first...
    pH<7.35 = acidosis
    pH>7.45 = alkalosis
    Then, if the CO2 is high or low, then it is respiratory...If the HCO3 is high or low then it is metabolic. How you remember that is that the respiratory system is involved with CO2 (blowing air off or slowing RR), and the kidneys (metabolic) are involved with HCO3 (excreting or not excreting).
    Here is how you think thru it: pH = 7.25 CO2 = 40 HCO3 = 17
    Ok, first, the pH is low so think acidosis. CO2 is WNL. HCO3 is low. Draw arrows if it helps. The abnormal values are both low (think Equal). Metabolic imbalances are equal. So, this must be metabolic acidosis!
    Now, for compensation...If you have a metabolic imbalance, the respiratory system is going to try to compensate. Respiratory = CO2. If the CO2 is normal in the ABG, then there is no compensation going on. Compensation in acidosis will decrease the CO2 because you want to get rid of the acid (CO2). In alkalosis, it will increase because you want to add more acid (CO2)
    If you have a respiratory imbalance, the kidneys will try to compensate. Kidneys = HCO3. If the HCO3 is normal in the ABG, then there is no compensation going on. Compensation in acidosis will increase HCO3 because you want to hold on to the base to make it more alkalotic. In alkalosis, it will decrease because you want to excrete the base to make it more acidic.

  3. Esme12

    Check out this tutorial
    Interactive Online ABG's acid base

  4. -> Continue reading
read more close

Related Articles

  • What Are The Causes Of Metabolic Acidosis And Alkalosis?

    Are you studying metabolic acidosis and need to know a mnemonic on how to remember the causes? This article will give you a clever mnemonic and simplify the signs and symptoms and nursing interventions on how to remember metabolic acidosis for nursing lecture exams and NCLEX. In addition, you will learn how to differentiate metabolic acidosis from metabolic alkalosis. Don’t forget to take the metabolic acidosis and metabolic alkalosis quiz. Thi ...

    ketosis Jan 13, 2018
  • Metabolic Acidosis And Alkalosis

    Practice Essentials Metabolic alkalosis is a primary increase in serum bicarbonate (HCO3-) concentration. This occurs as a consequence of a loss of H+ from the body or a gain in HCO3-. In its pure form, it manifests as alkalemia (pH >7.40). As a compensatory mechanism, metabolic alkalosis leads to alveolar hypoventilation with a rise in arterial carbon dioxide tension (PaCO2), which diminishes the change in pH that would otherwise occur. Normally ...

    ketosis Jan 15, 2018
  • What Are The Symptoms Of Acidosis And Alkalosis

    Acidosis is caused by an overproduction of acid in the blood or an excessive loss of bicarbonate from the blood (metabolic acidosis) or by a buildup of carbon dioxide in the blood that results from poor lung function or depressed breathing (respiratory acidosis). If an increase in acid overwhelms the body's acid-base control systems, the blood will become acidic. As blood pH drops (becomes more acidic), the parts of the brain that regulate breath ...

    ketosis Jan 13, 2018
  • Which Metabolic Rate Resulted In Metabolic Acidosis?

    Abstract The intent of this review is to provide a broad overview of the interorgan metabolism of glutamine and to discuss in more detail its role in acid-base balance. Muscle, adipose tissue, and the lungs are the primary sites of glutamine synthesis and release. During normal acid-base balance, the small intestine and the liver are the major sites of glutamine utilization. The periportal hepatocytes catabolize glutamine and convert ammonium and ...

    ketosis Jan 11, 2018
  • How Does Ketoacidosis Cause Metabolic Acidosis

    Background In 1940, Dillon and colleagues first described alcoholic ketoacidosis (AKA) as a distinct syndrome. AKA is characterized by metabolic acidosis with an elevated anion gap, elevated serum ketone levels, and a normal or low glucose concentration. [1, 2] Although AKA most commonly occurs in adults with alcoholism, it has been reported in less-experienced drinkers of all ages. Patients typically have a recent history of binge drinking, litt ...

    ketosis Jan 3, 2018
  • Why Is Dka Metabolic Acidosis

    © 1996–2017 themedicalbiochemistrypage.org, LLC | info @ themedicalbiochemistrypage.org Definition of Diabetic Ketoacidosis The most severe and life threatening complication of poorly controlled type 1 diabetes is diabetic ketoacidosis (DKA). DKA is characterized by metabolic acidosis, hyperglycemia and hyperketonemia. Diagnosis of DKA is accomplished by detection of hyperketonemia and metabolic acidosis (as measured by the anion gap) in the p ...

    ketosis Jan 3, 2018

Popular Articles

More in ketosis