Fat To Glucose Pathway

Share on facebook

Connections Of Carbohydrate, Protein, And Lipid Metabolic Pathways

Connecting Other Sugars to Glucose Metabolism Sugars, such as galactose, fructose, and glycogen, are catabolized into new products in order to enter the glycolytic pathway. Learning Objectives Identify the types of sugars involved in glucose metabolism Key Takeaways When blood sugar levels drop, glycogen is broken down into glucose -1-phosphate, which is then converted to glucose-6-phosphate and enters glycolysis for ATP production. In the liver, galactose is converted to glucose-6-phosphate in order to enter the glycolytic pathway. Fructose is converted into glycogen in the liver and then follows the same pathway as glycogen to enter glycolysis. Sucrose is broken down into glucose and fructose; glucose enters the pathway directly while fructose is converted to glycogen. disaccharide: A sugar, such as sucrose, maltose, or lactose, consisting of two monosaccharides combined together. glycogen: A polysaccharide that is the main form of carbohydrate storage in animals; converted to glucose as needed. monosaccharide: A simple sugar such as glucose, fructose, or deoxyribose that has a single ring. You have learned about the catabolism of glucose, which provides energy to living cells. B Continue reading >>

Share on facebook

Popular Questions

  1. Christian

    I read conflicting views about whether or not the human body can create glucose out of fat. Can it?

  2. David

    Only about 5–6% of triglyceride (fat) can be converted to glucose in humans.
    This is because triglyceride is made up of one 3-carbon glycerol molecule and three 16- or 18-carbon fatty acids. The glycerol (3/51-to-57 = 5.2–5.9%) can be converted to glucose in the liver by gluconeogenesis (after conversion to dihydroxyacetone phosphate).
    The fatty acid chains, however, are oxidized to acetyl-CoA, which cannot be converted to glucose in humans. Acetyl-CoA is a source of ATP when oxidized in the tricarboxylic acid cycle, but the carbon goes to carbon dioxide. (The molecule of oxaloacetate produced in the cycle only balances the one acetyl-CoA condenses with to enter the cycle, and so cannot be tapped off to gluconeogenesis.)
    So triglyceride is a poor source of glucose in starvation, and that is not its primary function. Some Acetyl-CoA is converted to ketone bodies (acetoacetate and β-hydroxybutyrate) in starvation, which can replace part — but not all — of the brain’s requirement for glucose.
    Plants and some bacteria can convert fatty acids to glucose because they possess the glyoxylate shunt enzymes that allow two molecules of Acetyl-CoA to be converted into malate and then oxaloacetate. This is generally lacking in mammals, although it has been reported in hibernating animals (thanks to @Roland for the last piece of info).

  3. blu potatos

    To be more detailed it is the irreversibly of the reaction carried by Pyruvate dehydrogenase that makes the conversion of the fatty acid chains to glucose impossible. The fatty acids chains are converted to acetyl-CoA.
    Acetyl-CoA to be converted into pyruvate need an enzyme that can do the Pyruvate Dehydrogenase's inverse reaction (in humans there is no such enzyme). Than the pyruvete inside the mitochondria is converted into glucose(gluconeogenesis).

  4. -> Continue reading
read more close

Related Articles

  • Fat To Glucose Pathway

    Fat-to-glucose interconversion by hydrodynamic transfer of two glyoxylate cycle enzyme genes 1Department of Nutrition and Food Sciences, Physiology and Toxicology, University of Navarra, Pamplona, Spain 2Laboratory of Animal Physiology and Nutrition, School of Agronomy, Public University of Navarra, Pamplona, Spain Received 2008 Sep 29; Accepted 2008 Dec 10. Copyright 2008 Cordero et al; licensee BioMed Central Ltd. This is an Open Access articl ...

    ketosis Mar 29, 2018
  • Glucose To Fat Pathway

    Pathways in the coordination of cellular glucose and fat metabolism Last Updated on Sat, 04 Mar 2017 | Fatty Acids The metabolism of fat and carbohydrate are closely linked; optimal oxidation of fat and conservation of glucose occur in the fed state and the opposite in the fasted state. Current theory identifies two major biochemical pathways as central components of this integrated coordination of energy metabolism . These are the glucose-fatty ...

    ketosis Mar 29, 2018
  • The Liver, Muscle, And Fat Tissue Are All Prone To Insulin Resistance Due To Fat Build-up

    Insulin resistance and high levels of insulin and lipids all precede the development of metabolic dysfunction. Which metabolic factor is to blame? Type 2 diabetes is a multifactorial metabolic disease.1 Obesity, elevated levels of lipids and insulin in the blood, and insulin resistance all accompany the elevated blood glucose that defines diabetes. (Diabetes is defined as fasting blood glucose concentrations above 7 millimolar (mM), or above 11 m ...

    insulin Jan 6, 2018
  • Insulin Receptor Signaling Pathway

    Coordinating metabolism and feeding is important to avoid obesity and metabolic diseases, yet the underlying mechanisms, balancing nutrient intake and metabolic expenditure, are poorly understood. Several mechanisms controlling these processes are conserved in Drosophila, where homeostasis and energy mobilization are regulated by the glucagon-related adipokinetic hormone (AKH) and the Drosophila insulin-like peptides (DILPs). This study provides ...

    insulin Feb 26, 2018
  • Insulin Secretion Pathway

    The insulin and IGF signaling pathways are critical for development and maintenance of pancreatic β cell mass and function. The serine-threonine kinase Akt is one of several mediators regulated by these pathways. We have studied the role of Akt in pancreatic β cell physiology by generating transgenic mice expressing a kinase-dead mutant of this enzyme in β cells. Reduction of Akt activity in transgenic animals resulted in impaired glucose tole ...

    insulin Mar 29, 2018
  • Insulin Metabolism Pathway

    Go to: Abstract As obesity and diabetes reach epidemic proportions in the developed world, the role of insulin resistance and its consequences are gaining prominence. Understanding the role of insulin in wide-ranging physiological processes and the influences on its synthesis and secretion, alongside its actions from the molecular to the whole body level, has significant implications for much chronic disease seen in Westernised populations today. ...

    insulin Dec 30, 2017

Popular Articles

More in ketosis