diabetestalk.net

Dka Hyperkalemia Or Hypokalemia

Share on facebook

Causes And Evaluation Of Hyperkalemia In Adults

INTRODUCTION Hyperkalemia is a common clinical problem. Potassium enters the body via oral intake or intravenous infusion, is largely stored in the cells, and is then excreted in the urine. The major causes of hyperkalemia are increased potassium release from the cells and, most often, reduced urinary potassium excretion (table 1). This topic will review the causes and evaluation of hyperkalemia. The clinical manifestations, treatment, and prevention of hyperkalemia, as well as a detailed discussion of hypoaldosteronism (an important cause of hyperkalemia), are presented elsewhere. (See "Clinical manifestations of hyperkalemia in adults" and "Treatment and prevention of hyperkalemia in adults" and "Etiology, diagnosis, and treatment of hypoaldosteronism (type 4 RTA)".) BRIEF REVIEW OF POTASSIUM PHYSIOLOGY An understanding of potassium physiology is helpful when approaching patients with hyperkalemia. Total body potassium stores are approximately 3000 meq or more (50 to 75 meq/kg body weight) [1]. In contrast to sodium, which is the major cation in the extracellular fluid and has a much lower concentration in the cells, potassium is primarily an intracellular cation, with the cells Continue reading >>

Share on facebook

Popular Questions

  1. metalmd06

    Does acute DKA cause hyperkalemia, or is the potassium normal or low due to osmotic diuresis? I get the acute affect of metabolic acidosis on potassium (K+ shifts from intracellular to extracellular compartments). According to MedEssentials, the initial response (<24 hours) is increased serum potassium. The chronic effect occuring within 24 hours is a compensatory increase in Aldosterone that normalizes or ultimatley decreases the serum K+. Then it says on another page that because of osmotic diuresis, there is K+ wasting with DKA. On top of that, I had a question about a diabetic patient in DKA with signs of hyperkalemia. Needless to say, I'm a bit confused. Any help is appreciated.

  2. FutureDoc4

    I remember this being a tricky point:
    1) DKA leads to a decreased TOTAL body K+ (due to diuresis) (increase urine flow, increase K+ loss)
    2) Like you said, during DKA, acidosis causes an exchange of H+/K+ leading to hyperkalemia.
    So, TOTAL body K+ is low, but the patient presents with hyperkalemia. Why is this important? Give, insulin, pushes the K+ back into the cells and can quickly precipitate hypokalemia and (which we all know is bad). Hope that is helpful.

  3. Cooolguy

    DKA-->Anion gap M. Acidosis-->K+ shift to extracellular component--> hyperkalemia-->symptoms and signs
    DKA--> increased osmoles-->Osmotic diuresis-->loss of K+ in urine-->decreased total body K+ (because more has been seeped from the cells)
    --dont confuse total body K+ with EC K+
    Note: osmotic diuresis also causes polyuria, ketonuria, glycosuria, and loss of Na+ in urine--> Hyponatremia
    DKA tx: Insulin (helps put K+ back into cells), and K+ (to replenish the low total potassium
    Hope it helps

  4. -> Continue reading
read more close

Related Articles

More in ketosis