diabetestalk.net

Can Fatty Acids Can Be Converted To Glucose?

Share on facebook

In Silico Evidence For Gluconeogenesis From Fatty Acids In Humans

In Silico Evidence for Gluconeogenesis from Fatty Acids in Humans 2Systems Biology/Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology Hans Knll Institute, Jena, Germany 3Department of Human Nutrition, Institute of Nutrition, University of Jena, Jena, Germany 4Department of Clinical Nutrition, German Institute of Human Nutrition, Potsdam-Rehbrcke, Nuthetal, Germany 1Department of Bioinformatics, School of Biology and Pharmaceutics, Friedrich Schiller University of Jena, Jena, Germany 2Systems Biology/Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology Hans Knll Institute, Jena, Germany 3Department of Human Nutrition, Institute of Nutrition, University of Jena, Jena, Germany 4Department of Clinical Nutrition, German Institute of Human Nutrition, Potsdam-Rehbrcke, Nuthetal, Germany Stanford University, United States of America Conceived and designed the experiments: CK RG MR SS. Analyzed the data: CK LFdF SW. Wrote the paper: CK LFdF SS. Received 2011 Jan 14; Accepted 2011 May 24. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestric Continue reading >>

Share on facebook

Popular Questions

  1. manohman

    Why can't fat be converted into Glucose?

    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?

  2. Czarcasm

    manohman said: ↑
    So the reason cited is that beta oxidation/metabolism of fats leads to formation of acetyl coa, a 2 carbon molecule, and that because of that it cannot be converted back into glucose.
    Why exactly is that the case?
    If Glucogenic amino acids can be converted into citric acid cycle intermediates and then turn back into glucose via gluconeogensis, then why cant Fatty Acids which yield Acetyl Coa. Can't you just have Acetyl Coa enter the citric acid cycle and produce the same intermediates that the glucogenic amino acids creat?
    Click to expand... Both glucose and fatty acids can be stored in the body as either glycogen for glucose (stored mainly in the liver or skeletal cells) or for FA's, as triacylglycerides (stored in adipose cells). We cannot store excess protein. It's either used to make other proteins, or flushed out of the body if in excess; that's generally the case but we try to make use of some of that energy instead of throwing it all away.
    When a person is deprived of nutrition for a period of time and glycogen stores are depleted, the body will immediately seek out alternative energy sources. Fats (stored for use) are the first priority over protein (which requires the breakdown of tissues such as muscle). We can mobilize these FA's to the liver and convert them to Acetyl-CoA to be used in the TCA cycle and generate much needed energy. On the contrary, when a person eats in excess (a fatty meal high in protein), it's more efficient to store fatty acids as TAG's over glycogen simply because glycogen is extremely hydrophilic and attracts excess water weight; fatty acids are largely stored anhydrously and so you essentially get more bang for your buck. This is evolutionary significant and why birds are able to stay light weight but fly for periods at a time, or why bears are able to hibernate for months at a time. Proteins on the other hand may be used anabolically to build up active tissues (such as when your working out those muscles), unless you live a sedentary lifestyle (less anabolism and therefore, less use of the proteins). As part of the excretion process, protein must be broken down to urea to avoid toxic ammonia and in doing so, the Liver can extract some of that usable energy for storage as glycogen.
    Also, it is worth noting that it is indeed possible to convert FA's to glucose but the pathway can be a little complex and so in terms of energy storage, is not very efficient. The process involves converting Acetyl-CoA to Acetone (transported out of mitochondria to cytosol) where it's converted to Pyruvate which can then be used in the Gluconeogenesis pathway to make Glucose and eventually stored as Glycogen. Have a look for yourself if your interested: http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002116.g003/originalimage (and this excludes the whole glycogenesis pathway, which hasn't even begun yet).
    TLDR: it's because proteins have no ability to be stored in the body, but we can convert them to glycogen for storage during the breakdown process for excretion. Also, in terms of energy, it's a more efficient process than converting FA's to glycogen for storage.

  3. soccerman93

    This is where biochem comes in handy. Czarcasm gives a really good in depth answer, but a simpler approach is to count carbons. The first step of gluconeogenesis(formation of glucose) requires pyruvate, a 3 carbon molecule. Acetyl Co-A is a 2 carbon molecule, and most animals lack the enzymes (malate synthase and isocitrate lyase) required to convert acetyl co-A into a 3 carbon molecule suitable for the gluconeogenesis pathway. The ketogenic pathway is not efficient, as czarcasm pointed out. While acetyl co-A can indeed be used to form citric acid intermediates, these intermediates will be used in forming ATP, not glucose. Fatty acid oxidation does not yield suitable amounts of pyruvate, which is required for gluconeogenesis. This is part of why losing weight is fairly difficult for those that are overweight, we can't efficiently directly convert fat to glucose, which we need a fairly constant supply of. Sorry, that got a little long-winded

  4. -> Continue reading
read more close

Related Articles

  • Can Fatty Acids Can Be Converted To Glucose?

    Gluconeogenesis is the process that leads to the generation of glucose from a variety of sources such as pyruvate, lactate, glycerol, and certain amino acids. Larry R. Engelking, in Textbook of Veterinary Physiological Chemistry (Third Edition) , 2015 Gluconeogenesis occurs in the liver and kidneys. Gluconeogenesis supplies the needs for plasma glucose between meals. Gluconeogenesis is stimulated by the diabetogenic hormones (glucagon, growth ho ...

    ketosis Mar 29, 2018
  • Can Fatty Acids Be Converted To Glucose?

    on on Fats (or triglycerides) within the body are ingested as food or synthesized by adipocytes or hepatocytes from carbohydrate precursors ([link]). Lipid metabolism entails the oxidation of fatty acids to either generate energy or synthesize new lipids from smaller constituent molecules. Lipid metabolism is associated with carbohydrate metabolism, as products of glucose (such as acetyl CoA) can be converted into lipids. Lipid metabolism begins ...

    ketosis Mar 3, 2018
  • Why Can't Fatty Acids Be Converted To Glucose

    Abstract The question whether fatty acids can be converted into glucose in humans has a long standing tradition in biochemistry, and the expected answer is “No”. Using recent advances in Systems Biology in the form of large-scale metabolic reconstructions, we reassessed this question by performing a global investigation of a genome-scale human metabolic network, which had been reconstructed on the basis of experimental results. By elementary ...

    ketosis Mar 28, 2018
  • Amino Acids Can Be Used By The Body To Make Glucose And Fatty Acids True Or False

    Why do we humans eat food? What do we need it for, and get out of it? W O R K T O G E T H E R Cellular respiration is an: Endergonic process Exergonic process Exergonic OR endergonic process, depending on the organism. In which organelle does cellular respiration occur? Chloroplast Mitochondria Depends on whether it’s a plant or an animal. What is “food†(i.e. source of metabolic energy) for plants? Sunlight Sugar Water Oxygen Mi ...

    ketosis Feb 24, 2018
  • Amino Acids Can Be Used By The Body To Make Glucose And Fatty Acids Quizlet

    Sort Electron Transport Chain The electron transport chain is the final pathway in energy metabolism that transports electrons from hydrogen to oxygen and captures the energy released in the bonds of ATP (respiratory chain). The electron transport chain captures energy in the high-energy bonds of ATP. The electron transport chain consists of a series of proteins that serve as electron "carriers." These carriers are mounted in sequence on the inne ...

    ketosis Mar 29, 2018
  • How Glucose Is Converted Into Fatty Acids?

    Dear Reader, Ah, poor carbohydrates, maligned by diets such as Atkins’ and the ketogenic diet. However, carbohydrates are your body’s main source of energy — in fact your muscles and brain cells prefer carbs more than other sources of energy (triglycerides and fat, for example). To answer your question: research completed over the last several decades suggests that if you are eating a diet that is appropriate for your levels of daily activi ...

    ketosis Mar 29, 2018

Popular Articles

More in ketosis